Choosing a Research Question: Implications for Efficient Clinical Trials

John H. Powers, MD Senior Medical Scientist Leidos Biomedical Research in support of Clinical Collaborative Research Branch NIAID/NIH

Introduction

- Choosing a research question as first step in research endeavors
 - Types of research questions
 - Process of working from one question to the next building a research "portfolio"
- Choice of research question and implications for design of studies
 - Influence on study design and sample size
 - Most efficient use of resources

Boundaries between Research and Practice

- Clinical research designates activity designed to test hypothesis, permit conclusions, and thereby develop or contribute to generalizable knowledge (expressed in theories, principles, and statements of relationships)
- Clinical practice interventions designed solely to enhance well-being of individual patient or client and have reasonable expectation of success, purpose to provide diagnosis, preventive treatment or therapy to particular individuals

Belmont Report on Ethics in Human Experimentation

3

Scientific and Ethics

- Study that cannot contribute to generalizable knowledge is not ethical
- Puts patients at risk of harm (even from minor inconvenience) for no benefit to anyone
- Scientific validity is not a "nice to have" but a requirement of all research
- Validity = ability of study to correctly answer research question posed

4

5

Science

- "It is not what the man of science believes that distinguishes him, but how and why he believes it. His beliefs are tentative, not dogmatic; they are based on evidence, not on authority or intuition."
- Bertrand Russell, A History of Western Philosophy, p. 527.

Choosing a Topic

- Idea come from life experiences
 - Clinical practice
 - "What do I have" (diagnosis)
 - "How bad is it" (prognosis)
 "Can I give it to my family?" (natural history)
 - Call give it to my family? (flatt
 "How did I get this?" (etiology)
 - "Will this stuff help me?" (treatment or prevention)
- Clinical research often focuses on biology but
 - can focus on other areas
 - "Why do people come to the doctor for disease X?" "What behaviors influence outcome in disease Y?"

7

8

Choosing a Topic

- Developing better tools to evaluate and describe disease is good place to start
- Need to characterize natural history of disease in order to study it
- Need to have valid measures of outcomes in order to 1)
 measure them and 2) describe risk factors for outcomes
- Example of measurement tools:
 - Seriousness/severity of disease (comparing baseline factors with outcomes)
 - Developing outcome measures (measures of morbidity e.g. functional status and symptoms)

Descriptive Research

- "<u>Classification</u> is fundamental to the quantitative study of any phenomenon. It is recognized as the basis of all scientific generalization and is therefore an essential element in statistical methodology. Uniform definitions and uniform systems of classification are prerequisites in the advancement of scientific knowledge. In the study of illness and death, therefore, a standard classification of disease and injury for statistical purposes is essential."
- Manual of the International Statistical Classification of Diseases, Injuries, and Causes of Death (ICD) 1957 (Introduction, pp. vii-ix)

Choose a Broad Topic

- Choose an idea that is interesting you have a lot of work to do!
- Choose a topic that is timely and relevant (need to answer the "so what" question) a question worth answering
- Choose a topic that is answerable keep in mind time and resource constraints
- F.I.N.E.R. (Hully and Cummings, Designing Clinical Research 1998)
 - Feasible BUT feasible and invalid = unethical
 Interesting
 - Interesti
 Novel
 - Novel
 Ethical
 - Relevant
- Mentor can help with all these facets of project

- Need to evaluate the medical literature and other sources to evaluate current knowledge in research area
- In many areas, much of what we know is less certain than generally believed
- Review and guidelines are places to start, but represent synthesis of others views on the data

 need to review for yourself

13

What Do We Know Already? The "Knowledge Gap"

- 1. How do you define the problem clinical features, signs, symptoms, laboratory values
- 2. How do you diagnose the problem? What is impact of diagnosis on outcome?
- 3. How large is the problem? Magnitude of problem in terms of number and types of persons affected
- 4. What is impact of problem? Attributable morbidity and mortality (often assumed)
- 5. What are risk factors for getting problem? (not necessarily causal)

What Do We Know Already? The "Knowledge Gap"

6. What is prognosis of problem? Morbidity and mortality

- 7. What factors modify prognosis independent of treatment? (Confounders)
- 8. What interventions can mitigate problem? Interventions can include drugs, devices, biologics, and behaviors
- 9. What factors are effect modifiers of treatment? Effect size differs depending on presence of factor
- 10. How do interventions compare to each other?

What Do We Really Know?

"The greatest obstacle to discovery is not ignorance, it is the illusion of knowledge"

- Daniel Boorstin

What Do We Know Already? The "Knowledge Gap"

- What do we know about previous questions?
 Often challenging to convince others we don't really know what we think we know
 - Argumentum ad verecundiam fallacy (argument from authority)
- What is quality of data? Validity, reliability and precision, biases in previous data
- Has evidence been independently confirmed?
- Is evidence consistent across different populations? Is a difference biologically plausible?
- For interventions: dose, duration of therapy, combination therapy

18

16

Overall Research Plan

19

20

- After evaluating what is known, need to focus on one part of research gap, one piece of the puzzle
- How does this research fit into an overall plan? What happens after this study (by you or someone else)?
- A single study cannot possibly answer all questions about a topic
- Research fits into an overall model/theory of a problem

Feasibility

- What kinds of information do you need to answer the question?
 - Population both test and control groups in analytical study
 - Exposures
 - Outcomes
- What kinds of information are available?
- · What resources are needed to obtain data needed?
- · Is there access to resources needed?
- Feasibility does NOT mean using invalid methods because that is "the best that can be done"

Developing Hypothesis or Description

- Hypothesis a statement about what investigator believes to be true about nature and relationships of two or more variable to each other
- Hypothesis testing entails a comparison, but not all research is comparative
- Differentiate *qualitative* and *quantitative* research
- Differentiate descriptive from analytical research

Developing Hypotheses Qualitative and Quantitative Research

.

Qualitative

Aim is complete detailed

Quantitative

 Aim to classify features, count them - numbers

 Construct statistical models to explain observations

Clearly state in advance what to look for

Later phases of research project

All aspects carefully designed before data collection

22

- Develop observations for further testing
- Only know roughly in advance what to look for

description - words

- Early phase of research project
- Design emerges as study unfolds
- Researcher is data instrument
- Researcher uses tools (questionnaires, equipment) to 23 collect numerical data

Developing Hypotheses Descriptive and Analytical Research

- Descriptive research provide an account and delineate components of a problem
 - Case report
 - Case series more data does not necessarily increase validity
- Analytical research testing one of more hypotheses in a quantitative fashion
- Distinction not as clear as descriptive research often contains comparisons (but cannot assess causality) and analytical research often contains descriptions
- Push for "hypothesis driven" research tends to make descriptions sound less valuable but descriptions help form hypotheses

Examples of Hypotheses The more specific the better: "Antibiotics are effective in acute otitis media in children" "Amoxicillin is effective in acute otitis media in children who are between 2 and 6 years of age" "Amoxicillin is effective compared to placebo in reducing pain in children ages 2 to 6 years with initial episodes of acute otitis media"

Specific Aims and Objectives

- Choosing an overall research questions gives you a "why" (the rationale for doing the study)
- Next need to answer the questions related to specific measurements and define them:
 - 1. Who define population under study
 - 2. Where setting in which study will occur
 - 3. When -
 - what time frame of analysis; "from January 2000 to January 2009"
 Prospective or retrospective hypothesis in relation to data, not how collected
 - What variables of exposure intervention and outcome (content validity)
 How what tools to use to massure variables (construct and criterion)
 - 5. How what tools to use to measure variables (construct and criterion validity)
 - Need to be as specific as possible regarding measurement variables and how to measure them
 Failing to plan is planning to fail
 - Faling to pian is planning to fall
 Avoid circular or vague language: "Clinical outcomes will be divides into clinical
 success and failure"

28

Common Pitfalls

- Letting "feasibility" issues change the question to one not worth answering or answering it in an invalid way
- Taking on too many questions and thereby answering none
- Lack of clarity of hypothesis and lack of clarity on study design
- Vague specific aims and variables and unclear measurement properties of tools

Designing Trials Efficiently

Definitions

- Clinical trial a controlled prospective study enrolling
 human subjects often used to evaluate the effectiveness and/or harms of interventions in treatment, prevention or diagnosis of disease
- Efficiency
 - (in physics) ratio of useful work to the energy supplied to it
 - In clinical trials, getting valid and reliable answers to important questions with the least amount of resources
 - Does not mean putting patients at risk because of less valid data
 - Lower sample size does not mean less work = MORE planning

32

31

Lower Sample Size = More Planning · " Clinical trials with small numbers of participants, however, must address broad sets of issues different from those that must be addressed in trials with large numbers of participants. It is in those circumstances of trials with small sample sizes that approaches to optimization of the study design and data interpretation pose greater challenges." Small Clinical Trials: Issues and Challenges, Institute of Medicine, 2001 http://www.nap.edu/catalog/10078.html p. ix

Definitions

- What is a "large" or "small" clinical trial?
- IOM defines a "large" trial as one that has adequate sample size to answer the primary research question = "large enough"
- A trial with very few participants may still have adequate statistical power e.g. if effect size is large
- Balance between exposing research subjects to potential harms of experimental interventions with obtaining valid answers

34

Underpowered Studies and Ethics The Continuing Unethical Conduct of Underpowered Clinical Trials

Scott D. Halpern, MSCE Jason H. T. Karlawish, MD Jesse A. Berlin, ScD

A series of the series of the

Despite long-standing critiques of the conduct of underpowered clinical tridisk, the practice not only remains widespread, but also has garnered increasing support. Patients and healthy volunteers continue to participate in reorder the standing of the standing and value of underpowered clinical related arguments to support the validly and value of underpowered clinical ratio combine the results with those of other similar studies to enable estimates of an intervention's efficacy, and that although small studies may not provide a good basis for testing hypotheses. How may providing a many not provide a good basis for testing hypotheses, they may provide valuable eswith the conduct of underpowered trials have more to possible the studies with the disclosures that are owerd to possible the studies with and the disclosures that are owerd to possible the studies with and the disclosures that are owerd to possible the studies with the studies of the studies in the disclosures that are owerd to conduce that underpowered trials are thick investigators document expective meta-analysis, and exis-phase that is in the development of drags or participants the standing their results with those of similar trials in a prospective meta-analysis, and easi-phase that is in the development of drags or the standing their are used by pointeed to defined purposes of purposes of the standing their are used by pointeed to defined purposes of the provement of the standing the transition on the standing the standing

55

Underpowered Studies and Ethics

- "A proposed study that cannot answer the question being asked because the necessary sample size cannot be attained should not be conducted on ethical grounds. That is, it is unacceptable to expose patients or research participants to harms, even inconveniences, if there is no prospect that useful and potentially generalizable information will result from the study."
 - Small Clinical Trials: Issues and Challenges, Institute of Medicine, 2001 http://www.nap.edu/catalog/10078.html p. 14

Small Clinical Trials – Last Resort

- "The importance of conducting small clinical trials <u>only</u> <u>when there are no alternatives cannot be overemphasized</u>. The committee is <u>not encouraging</u> the use of small clinical trials, but, rather provides advice on strategies that should be considered in the design and analysis of small clinical trials when the opportunity to perform a randomized clinical trial with adequate statistical power is not possible. In doing so, it recognizes that small clinical trials frequently need to be viewed as part of a continuing process of data collection. Thus, for some trials it might be impossible to definitively answer a research question with a high degree of confidence. In those cases, perhaps the best that one can do is assess the next set of questions to be asked."
 - Small Clinical Trials: Issues and Challenges, Institute of Medicine, 2001 http://www.nap.edu/catalog/10078.html p. 10-11.

Concerns About Small Clinical Trials

- Small numbers increase variability and leave much to chance
- Statistically significant outcomes may not be generalizable (only apply to circumstances in trial)
- · Too many variables to assess cause and effect
- Only able to discern gross effects and limited ability to analyze covariates
- Incapable of identifying adverse events
 - Small Clinical Trials: Issues and Challenges, Institute of Medicine, 2001 http://www.nap.edu/catalog/10078.html p. 15

38

37

Situations Where Smaller Clinical Trials Justifiable

Rare diseases

- Unique study populations (e.g. astronauts)
- Individually tailored therapies
- Environments that are isolated
- Emergency situations
- Public health urgencies

 Small Clinical Trials: Issues and Challenges, Institute of Medicine, 2001 http://www.nap.edu/catalog/10078.html p. 6.

Small vs Efficient

- While small clinical trials are a last resort, efficient clinical trials are always justifiable
- Different methods to improve efficiency are useful (or not) depending on disease under study and research question/setting

40

41

Components of Clinical Studies

- 1. Clear objective of study
- 2. If comparative (rather than descriptive) quantitative comparison with control group
- 3. Select patients for inclusion in study
- 4. If comparative, baseline comparability of groups compared
- 5. Minimizing bias of study
- 6. Well-defined and reliable outcome measures (patient-centered)
- 7. Appropriate statistical analysis

Review of Sample Size Considerations

Sample Size

- Want to select sample size large enough to show a difference if there is one to detect, but not too large
 - Do not want to expose subjects unnecessarily to harm since this is an experiment evaluating interventions with unknown harm/benefits
 - Use of resources time, effort and money
- Sample size based on four parameters ("ingredients") Type 1 error- usually specified as 0.05 two sided (0.025 on either side of curve)
 - Type 2 error (1- type 2 error is power) usually specified as 0.10 to 0.20 (power of 80%-90%) •
 - Standard deviation of data (variability)
 - Treatment difference Difference between point estimate of effect for intervention and point estimate for effect with control (delta)

Efficient Clinical Trials

- Ways to decrease sample size
 - 1. Focused and relevant research question 2. Changing error rates (not suggested)
 - 3. Enhancing effect sizes

 - More homogenous populations
 Choosing populations in whom effect size is larger
 - Optimizing exposure
 Continuous instead of dichotomous outcomes
 - Selection of outcomes

 - 4. Decreasing variability More sensitive/specific measures Assuring follow-up of enrolled subjects
 - Study designs
 - Cross-over N=1 studies
 - Sequential trial designs (e.g. dose-escalation studies)

53

Efficient Clinical Trials

- Ways to decrease sample size
 - 1. Focused and relevant research question
 - 2. Changing error rates (not suggested)
 - 3. Enhancing effect sizes
 - More homogenous populations
 Choosing populations in whom effect size is larger
 - .
 - Optimizing exposure Continuous instead of dichotomous outcomes
 - Selection of outcomes
 - 4. Decreasing variability More sensitive/specific measures Assuring follow-up of enrolled subjects
 - Study designs
 - Cross-over
 - N=1 studies .
 - Sequential trial designs (e.g. dose-escalation studies)

2. Changing Error Rates

- Error rates of type 1 = 0.05 and type 2 = 0.10 or 0.20 are by convention
- · But...false positive error rate of 1 in 20 trials is actually a low level of evidence; need justification to deviate from this
- Increasing type 2 error rate increases likelihood of false negative conclusions = spending resources for unclear answers
- Error rates measure random error (by chance) but not bias due to poorly designed study

56

55

Efficient Clinical Trials

- Ways to decrease sample size
- 1. Focused and relevant research question
- 2. Changing error rates (not suggested)
- 3. Enhancing effect sizes

 - More homogenous populations
 Choosing populations in whom effect size is larger
 - •
 - Optimizing exposure Continuous instead of dichotomous outcomes
 - Selection of outcomes
- 4. Decreasing variability

 More sensitive/specific measures
 - Assuring follow-up of enrolled subjects Study designs .

.

- Cross-over
 - N=1 studies
 - Sequential trial designs (e.g. dose-escalation studies)

Enhancing Effect Sizes

- Trials measure average effects in groups of subjects "one size fits all" approach may not be correct •
- More homogenous populations can both decrease variability and increase effect sizes in presence of effect modification .
- Effect modification is presence of quantitatively different effect sizes of an intervention based on a baseline variable (e.g. drug is more effective in older people vs younger people)
- Requires knowledge of natural history of disease and evidence • from prior trials
- Choosing population in which effect size is larger decreases sample size

58

Examples

- · Enrolling subjects in trial in whom effect is expected to be zero
 - · Dilutes effect size
 - · Ethical issues of exposure to harm for no benefit
- Trastuzumab (Herceptin) in breast cancer
 - Mechanism of action by binding to HER2 proteins in person with specific genetic mutation
 - 20% to 30% of person with breast cancer have this mutation

 - · Potentially harmful in those without the mutation

59

Sequential trial designs (e.g. dose-escalation studies)

61

62

Efficient Clinical Trials

- Ways to decrease sample size
 - 1. Focused and relevant research question
 - 2. Changing error rates (not suggested)
 - 3. Enhancing effect sizes
 - More homogenous populations
 Choosing populations in whom effect size is larger

 - Optimizing exposure Continuous instead of dichotomous outcomes
 - Selection of outcomes

- 4. Decreasing variability

 More sensitive/specific measures
 - Assuring follow-up of enrolled subjects Study designs

 - Cross-over N=1 studies
 - Sequential trial designs (e.g. dose-escalation studies)

Continuous vs Dichotomous Outcomes · Continuous outcomes have more power to detect differences since uses all the data · Dichotomous outcomes require • 1) categorization – assumes all data in a single category are similarly important which may not be true • 2) choosing correct time point to evaluate - if you're wrong, you miss it · Requires more frequent data capture - patient diaries or phone contact collected in systematic way 63

Efficient Clinical Trials

- Ways to decrease sample size
 - 1. Focused and relevant research question 2. Changing error rates (not suggested)

 - 3. Enhancing effect sizes
 - More homogenous populations
 Choosing populations in whom effect size is larger

 - Optimizing exposure Continuous instead of dichotomous outcomes
 - Selection of outcomes
 - 4. Decreasing variability More sensitive/specific measures Assuring follow-up of enrolled subjects Study designs

 - Cross-over N=1 studies
 - Sequential trial designs (e.g. dose-escalation studies)

Common or Composite Outcomes · Choosing more common events or composite outcomes increases number of events and increases power to detect differences Some problems with interpretation: • Only use when outcomes measured are of similar importance to patients – if driven by less important outcomes may mask inferiority on more important outcomes · Does not necessarily imply beneficial effect on all part of a composite

66

Composite Endpoints - Issues

Table I. Structure of data on death and hospitalization (hypothetical data).

	Treatment	
	Active	Contro
Died but never hospitalized during follow-up (%)	15	5
Hospitalized and died during follow-up (%)	5	15
Hospitalized, alive at the end of follow-up (%)	20	20
None of the above (%)	60	60

Lubsen J et al. Stat Med 2002;21:2959-70.

- Ways to decrease sample size
 - 1. Focused and relevant research question 2. Changing error rates (not suggested)
 - 3. Enhancing effect sizes

 - More homogenous populations
 Choosing populations in whom effect size is larger
 Optimizing exposure
 Continuous instead of dichotomous outcomes
 - More common or composite outcomes
 - 4. Decreasing variability More sensitive/specific measures Assuring follow-up of enrolled subjects Study designs
 - - Cross-over
 N=1 studies
 - Sequential trial designs (e.g. dose-escalation studies)

67

Non-Standardized Measures and Error

- Moertel CG and Hanley JA, Effect of measuring error on the results of therapeutic trials in advanced cancer. Cancer 1976;38:388-94.
- 16 oncologists asked to measure 12 simulated tumor masses, two
 pairs of which were identical in size
- Allowed assessment of 64 measurements by same investigator and 1920 comparisons by different investigators
- 25% "reduction" as "response" for identical size masses = 19% response rate by same investigator, 25% between investigators (measurement error alone)

 NMEs with PROs in approved labeling, by

 bit

 bit

Surrogate Endpoints

- Researchers often suggest biomarkers as "surrogate endpoints" in clinical trials – NOT direct measures of patient benefit
- Idea originally was to decrease follow-up time in chronic diseases – keep following subjects to validate biomarker (e.g. viral load in HIV/AIDS, cholesterol in stroke/MI prevention)
- Why use a surrogate in an acute disease when one can measure actual clinical outcomes?
- Surrogate as part of composite outcomes drive the entire outcome since more common

73

Follow-Up and Missing Data

- Enrolling subjects and then losing them to follow-up or missing data (failure to collect or losing it) results in effort for no gain
- Requires planning on part of researchers and work during the trial to make it as easy as possible for research
 - subjects to return

 Phone calls and reminders
 - Transportation
 - Home visits
- Subjects who don't follow protocol are not "missing" and should be included in Intent to Treat (ITT) analyses

76

77

Efficient Clinical Trials

- Ways to decrease sample size
 - 1. Focused and relevant research question
 - 2. Changing error rates (not suggested)
 - 3. Enhancing effect sizes
 - More homogenous populations
 Choosing populations in whom effect size is larger
 - .
 - Optimizing exposure Continuous instead of dichotomous outcomes
 - More common or composite outcomes
- 4. Decreasing variability More sensitive/specific measures Assuring follow-up of enrolled subjects Study designs

 - Cross-over N=1 studies
 - Sequential trial designs (e.g. dose-escalation studies)

Study Designs

- Certain kinds of study designs can decrease variability and thereby decrease sample size
- · Cross-over and n=1 trials both use subjects as their own controls
- Randomize subjects to receive one intervention or the other (sometimes with wash out period in between)

Study Designs

- Sequential trial designs often used in Phase 1
 dose escalation clinical trials
- Based on pre-defining what level of adverse events or not will allow progression to the next dose
- Makes decision based on data acquired during trial

80

Study Designs

- "Adaptive" designs word that describes a variety of changes in trial design based on data accumulated during the trial
- Sequential trial dose escalation design is one form but more challenging when modifying other variables like the outcome measure
- Advantage = more subjects assigned to more succesful treatment
- Disadvantage = heterogeneity of subjects based on important risk factors which change as trial progresses introduces bias over time

A caveat....

- All the modification we have discussed apply to SUPERIORITY trials
- Non-inferiority is misnomer does not mean "not inferior" as to show an intervention is "equal" or "not inferior by any amount requires showing superiority
- Biases which trend results toward no difference in a superiority trial (like too small a sample size) result in false positive conclusions in non-inferiority trials
- Non-inferiority does not answer question of added benefit of new interventions; use only in selected situations (e.g improved convenience) •

82

Non-inferiority trials are unethical because they disregard W patients' interests

Silvio Garattini, Vittorio Bertele'

pitfalls and inappropriate interpretation of results.™ than with the latter. situation in which patients can justifiably be entered into aim to prove similarity of a new drug to the comparator, bendsprainingsit a trial that will not provide them with any advantage. since true equivalence is theoretical and is difficult to

Equivalence trials' have been widely used to assess new but not to the extent that it is recognised as such. For Lower 2007;370:1075-77 drugs, but have recently lost ground to a non-inferiority example, if the non-inferiority limit is set at 7.5%, an Published Online design. This type of trial is usually accepted by regulatory increase in the incidence of serious events or October 23.2007 authorities for approval of new drugs or new indications, deaths—say 7% instead of the 5% currently established although the US Food and Drugs Administration has for the comparator—is not seen as large enough to raised some concerns.¹ In this paper, we argue that the scientific community should ban non-inferiority and drug. The new drug will therefore be considered **Main by/pdf/Samioun** equivalence trials because they are unethical, whatever non-inferior to the old drug, even if in 1000 patients VBetae MD) equivalence trials because they are unefficial, whatever non-interior to une our using scenario and the second sec pattais and inappropriate interpretation of results." talan with the latter. Exceptions might exist, but we could not identify a These arguments also apply to equivalence trials, which ter Phancatogial Result, Mar 2005, Hay

33

Conclusions

- Developing an efficient trial starts with planning and a good research question
- · Question comes first, sample size second
- Various methods to increase effect sizes and decrease variability, when applied in the correct setting, can provide valid and reliable answers to important public health questions
- For some diseases, developing the tools (better outcome measures, better data on natural history) is a good start to better trials