Using Large Datasets for Population-based Health Services Research

Leighton Chan, MD, MPH
Chief, Rehabilitation Medicine
Department
Clinical Center
NIH

Disclosures

- No financial disclosures

A “new” era: BIG DATA

- Advances in computing power-IBM Watson
- Increasing data capture- EMR
- We can use these data to:
 - Provide “decision support” to providers
 - Inform policy
Types of Data

- Structured: highly organized data containing pre-defined elements with standardized relationships to one another (e.g., data in a database)
- Unstructured: data that is not structured in a pre-defined manner
 - Clinical notes, Faxed documents
 - Anything written in narrative
- Majority of medical data is unstructured

Where Does Data Come From?

- Primary Data – generated for research purposes, including national surveys and disease registries
- Secondary Data – Secondary data is administrative/billing/encounter data
 - Often generated with utilization in mind
 - Enough data to make meaningful population-base conclusions

Common sources of Secondary data

- Populations:
 - Medicare (55 million)
 - Integrated health systems (66 million, Kaiser)
 - Medicaid (53 million)
 - Pharmacies
- Billing/encounter/administrative data
 - Electronic Medical Record (RMR)
Why Study Medicare Patients?

- Largest purchaser of health care in the world
- 15% of the national budget
- 21% of all health care dollars in US
- 28% of inpt. spending
- 16% of nursing home spending
- 24% of physician billings
- Medicare: 55 million enrollees, $556 billion/yr
- Single data system

Who are Medicare patients?

- 90% age > 65
- 1% ESRD
- 9% enrolled through “disability”
- 26% in an HMO

Medicare

- Medicare beneficiaries health care costs
 - $19,000/year
- Medicare pays over 50% $11,000
- Costs will double in the next decade
- Part A trust fund depleted in 2030
Organization of Medicare Data: Files

- Hospital stays
- Physician visits (inpt & outpt)
 - specialty
 - experience
- SNF, DME, & Home Health
- Hospital level data: size, non-profit status, staffing, etc.

Organization of Medicare Data: Variables

- Patient demographics:
 - age, sex, race, zip code
- Primary Diagnosis(ICD-9)
- Associated co-morbidities
- Procedure codes - CPT-4 & HCPCS

Organization of Medicare Data: Variables

- Hospitalization and Rehospitalization
- Sentinel Events
- Length of Stay
- Disposition
- Mortality
- Pharmacy use
- Costs
Benefits of Medicare Data

- Pre-existing data
 - less expensive
 - less time
- large numbers of cases
 - Generalizibility
- Links to other data
 - Zip codes, SSN
- Accurate measure of resource use
- Can measure “effectiveness”

Limitations of Medicare Data

- Lots of limitations...
 - Limited data on severity of illness
 - Not generalizable to the US working population
 - Coding and billing errors/bias
 - Limited outcome measures of interest
 - No QOL, Patient Satisfaction, functional assessment, illness severity

Limitations

- Studies limited to non-experimental design (observational studies)
- Difficult to avoid selection bias
- Impossible to control for all possible confounders (e.g., severity of illness & functional status)
- HMO patients are excluded
- Cost of obtaining the data
- Administrative overhead
How can I get data access?

- Medicare administrative/billing/encounter data
 - http://www.resdac.org/about-resdac/our-services
 - Available through CCW Data Enclave

Types of Studies using Medicare data

- Monitoring secular trends
- Measuring disparities
 - Race, ethnicity, SES, geographic variation
- Supporting the evaluation of specific conditions, treatments or procedures

Monitoring Secular Trends

- Examine changes in health care over time
- Take advantage of “Natural Experiments”
 - Examine the impact of policy changes
 - e.g., Epidural Steroid Injections for Back Pain
 - 14,000 recently exposed to contaminated steroids
Percent of US Population with LBP

Source: National Center for Health Statistics, National Ambulatory Medical Care Survey: 1998-2004

Prevalence of Low Back Pain (>age 65)

<table>
<thead>
<tr>
<th>Year</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>15%</td>
</tr>
<tr>
<td>2000</td>
<td>20%</td>
</tr>
<tr>
<td>2005</td>
<td>28%</td>
</tr>
<tr>
<td>2010</td>
<td>32%</td>
</tr>
</tbody>
</table>

One or more MD encounter for LBP
Medicare patients 2002-2006

- Nonspecific backache 60.3%
- Degenerative changes 14.7%
- Sciatica 11.8%
- Spinal Stenosis 7.3%

LBP Costs

- Deyo, MEPS
- Costs are very high ($86B)
- Mean adjusted costs
 - 1997 $4,695 (95% CI, $4,181-$5,209)
 - 2005 $6,096 (95% CI, $5,670-$6,522)
- 30% increase in costs
- Self-reported measures of mental health, physical functioning, work or school limitations, and social limitations among adults with spine problems were worse in 2005 than in 1997.
Definitions

Epidural Steroid Injections
Transforaminal

Are ESIs Effective in LBP?

Conflicting data on effectiveness of ESIs

- 18-90% success rates
- Few good quality studies (Freidly, 2014)
- No consistency in methods
 - Patient selection
 - Technique used
 - Definition of success
- Recent incidents confirm that the risks of the procedure are greater than suspected

Methods

- Retrospective Cohort Study
- Medicare claims data
- 1995-2006, 5%-20% sample of physician bills
- Cohorts defined by CPT and ICD-9 codes
 - 62311 Caudal or interlaminar
 - 64483 Transforaminal
 - 64475 Facet Injection
- LBP dx from ICD-9 codes
- Physician specialty from UPIN
450% increase in ESIs per 1000 Medicare Enrollees

SI Joint Injections/1000 Persons with "SI" Disease

Facet (Medial Branch) Neurotomies

>7 fold increase
Who Is Performing ESIs?

<table>
<thead>
<tr>
<th>Year</th>
<th>Diagnosis</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>Herniated Disc</td>
<td>9%</td>
</tr>
<tr>
<td></td>
<td>Degenerative</td>
<td>11%</td>
</tr>
<tr>
<td></td>
<td>别的</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>Pain</td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>19%</td>
</tr>
<tr>
<td></td>
<td>Radiculopathy</td>
<td>33%</td>
</tr>
<tr>
<td>2005</td>
<td>Herniated Disc</td>
<td>9%</td>
</tr>
<tr>
<td></td>
<td>Degenerative</td>
<td>11%</td>
</tr>
<tr>
<td></td>
<td>别的</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>Pain</td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>19%</td>
</tr>
<tr>
<td></td>
<td>Radiculopathy</td>
<td>33%</td>
</tr>
</tbody>
</table>

What are the indication for ESIs?

2001 ESI Diagnoses

- Radiculopathy 33%
- Degenerative Changes 11%
- Spinal Stenosis 23%
- Herniated Disc 9%
- Other Back Pain 25%

How much has this increase cost Medicare?
Total Estimated Costs

- Physician Professional Fees: $175 million
- Facility Fees: $275 million

Total Cost to Medicare = $450 million

Where ESIs are Performed?
- Outpatient Hospital Clinics
- Physician Offices
- Ambulatory Surgical Centers
Ambulatory Surgery Centers (ASCs)

Most Medicare certified ASCs are: (n=5,000)
- privately owned
- for profit
- urban locations

Ambulatory Surgery Centers (ASCs)

- Supposed to reduce costs by avoiding hospital overhead
- Majority owned by local physician investors
- The Stark self-referral law (1989 Social Security Act) does not apply to ASCs
 - MDs can invest in ASCs and increase revenue by receiving ASC facility payments
ASC Advantages

• More convenient locations, shorter wait times
• Medicare coinsurance is lower than in hospitals
 ▫ ($9 difference in 2004)
• Customized environments, specialized staffing
• Customer friendly

ESIs at ASCs: 1995-2005

1995: 13% of ESIs performed at ASCs
2005: 29% of ESIs performed at ASCs

2005 Lumbar Sacral Injection Facilities

- Physician Offices 19%
- Ambulatory Surgery Centers 19%
- Hospital based 53%
- Other 12%
Results

ASC ESI Facility Payment*

1995: $7.5 million
2005: $101 million
>1200% increase

Conclusions

• Lots of growth in ESI
• Growth associated with shift in “injectionists”
• Growth associated ASC growth
• Significant cost increases for Medicare
• Do patients benefit?

Measuring geographic variation

• Tom Wennberg & Alan Gittelsohn
• Examine procedure rates in different geographic areas
• If rates differ this suggests inequity or inefficiency in practice
Geographic Variations

Health Referral Regions (HRR):
- Smaller geographic regions
- Defined by Dartmouth’s Atlas for Health Care (http://www.dartmouthatlas.org/)
- 306 HRRs across the country
- Defined by where most of the cardiovascular and neurosurgery is performed
Comparative magnitude of variability of orthopedic procedures

From Weinstein, et. al., Spine, 2006

2005 Geographic Variations:
Health Referral Regions:

- 9-fold difference in ESIs/1000 patients
 - 7.9/1000 in Honolulu, HI
 - 103.6/1000 in Palm Springs, CA
Geographic Variations

Summary

1. Large geographic variations in ESI use
2. High ESI rates are not associated with lower surgery rates
3. High ESI rates are moderately associated with “injectionist” supply

Limitations

- Only study those over age 65 in Medicare
 ▫ No young active workers
 ▫ No HMO patients
- Possible errors in diagnosis/billing codes
- Which ESI rate is right?
 ▫ No data on pain relief
 ▫ No data on return to work
 ▫ No data on functional improvement

Unanswered Questions

- Are ESIs effective?
 ▫ How do we select the ideal patients for ESIs?
 ▫ How many should we be doing?
 ▫ How often should we be doing them?
 ▫ Should we be doing them with other treatments? (i.e. multidisciplinary approach)
Analyzing a specific procedure

- Bariatric surgery for obesity

Bariatric Surgical Procedures Mortality Study

- Dramatic growth in bariatric surgery in obese adults
 - the number between 1998 and 2004 from 13,386 to 136,000
- No national coverage decision or consensus regarding efficacy and safety in older adults
Bariatric Surgical Procedures Mortality Study

- Objective:
 - Evaluate the risk factors of early mortality among Medicare beneficiaries (age, gender, surgeon experience)
 - Determine relative risk of death among older patients
 - Retrospective cohort design using Medicare physician bills, (1996-2002), 16,155 cases

Survival After Bariatric Surgery by Age Group

Mortality Rate After Bariatric Surgery, by Age and Sex

<table>
<thead>
<tr>
<th>Age Category</th>
<th>30 Days</th>
<th>90 Days</th>
<th>1 Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>0.2</td>
<td>0.9</td>
<td>1.2</td>
</tr>
<tr>
<td>Female</td>
<td>0.2</td>
<td>0.9</td>
<td>1.3</td>
</tr>
<tr>
<td><55</td>
<td>0.2</td>
<td>0.9</td>
<td>1.3</td>
</tr>
<tr>
<td>55-64</td>
<td>0.2</td>
<td>0.9</td>
<td>1.3</td>
</tr>
<tr>
<td>65-74</td>
<td>0.1</td>
<td>1.1</td>
<td>2.3</td>
</tr>
<tr>
<td>75-84</td>
<td>1.2</td>
<td>2.3</td>
<td>4.6</td>
</tr>
</tbody>
</table>

Rate of Early Mortality After Bariatric Surgery, Stratified by Surgeon Volume*

Table 4. Rate of Early Mortality After Bariatric Surgery, Stratified by Surgeon Volume

<table>
<thead>
<tr>
<th>Annual Surgeon Volume</th>
<th>No.</th>
<th>30 Days</th>
<th>90 Days</th>
<th>1 Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 or less</td>
<td>3200</td>
<td>2.2</td>
<td>2.0</td>
<td>2.6</td>
</tr>
<tr>
<td>15-25</td>
<td>3191</td>
<td>1.7</td>
<td>2.2</td>
<td>2.9</td>
</tr>
<tr>
<td>26-70</td>
<td>3065</td>
<td>1.3</td>
<td>2.3</td>
<td>3.2</td>
</tr>
<tr>
<td>51-200</td>
<td>3565</td>
<td>1.2</td>
<td>1.8</td>
<td>3.1</td>
</tr>
<tr>
<td>Total</td>
<td>12,961</td>
<td>1.9</td>
<td>2.3</td>
<td>3.2</td>
</tr>
</tbody>
</table>

*Fatality rates per 1000 patients.

Limitations

- CPT codes not precise enough to determine exact procedure
- Analysis of missing data?
- Only those over age 65
- Surgeon volume related to Medicare pts only

Bariatric Surgery Mortality Study

- Conclusions:
 - Medicare beneficiaries >=65 nearly 3 fold increase in risk of early mortality
 - Post-operative mortality rates associated with:
 - Advancing age
 - Male sex
 - Lower surgeon volume bariatric procedures
 - Medicare allowed those over 65 to have surgery, but only at those sites that did more than 125/year and by surgeons doing more than 50/yr
 - 2010 follow-up study showed a reduction in LOS and complications after the NCD
Conclusions

- Medicare Claims data is widely used in outcomes research
- The data has significant advantages and disadvantages
- The importance of this data will increase as the US demographics change and Medicare enrollment accelerates

CCW Data Enclave

- CMS developed virtual data access for investigators through a new data enclave
- Cost determined by the number of licenses (seats) in the enclave, and not by the amount of data requested
- Users are assigned a dedicated workspace within the CCW Virtual Data Enclave where they can directly access approved CMS data and run analyses in SAS
- Users may:
 - Upload external files to their Data Enclave workspace for use with CMS data
 - Download aggregate, statistical files to their workstations

NLP: The Next Big Thing

- Unstructured data
 - There is a lot!
 - Medical history
 - Large numbers of patients
 - Machine learning methods: identify patterns, trends, and long-term changes
- Need input from clinician and a linguist
- Successful pre-processing critical
NLP Application to HF

• Identification of Framingham HF criteria in PCP notes
• Based on Unstructured Information Management Architecture (UIMA) framework
• Partnership between IBM T.J. Watson Research Center, Geisinger Medical Center, and Sutter Health

Promising Results

• High accuracy in identification of Framingham HF criteria
 ▫ Few false negatives: successfully identified 90% of true positives
 ▫ Few false positives: >92% of cases labeled positive were true positives
• Demonstrates PC notes can be successfully extracted
• Shows potential for early identification methods