Sample Size and Power
Laura Lee Johnson, Ph.D.
Statistician
National Center for Complementary and Alternative Medicine
johnslau@mail.nih.gov
Fall 2011
Objectives
Calculate changes in sample size based on changes in the difference of interest, variance, or number of study arms
Understand intuition behind power calculations
Recognize sample size formulas for the tests
Learn tips for getting through an IRB
Take Away Message
Get some input from a statistician
This part of the design is vital and mistakes can be costly!
Take all calculations with a few grains of salt
“Fudge factor” is important!
Round UP, never down (ceiling)
Up means 10.01 becomes 11
Analysis Follows Design
Vocabulary
Arm = Sample = Group
Demonstrate superiority

Detect difference between treatments
Demonstrate equally effective
Equivalence trial or a 'negative' trial
Sample size required to demonstrate equivalence larger than required to demonstrate a difference
Demonstrate non-inferiority
Lots of issues
Superiority vs. Equivalence
Bell curve showing superiority, equivalence and superiority with no difference.
Non-Inferiority
Bell curve showing non inferiority.
Vocabulary (2)

Follow-up period
How long a participant is followed

Censored
Participant is no longer followed

Incomplete follow-up (common)
Administratively censored (end of study)

More in our next lecture
Outline
Power
Basic Sample Size Information
Examples (see text for more)
Changes to the basic formula
Multiple comparisons
Poor proposal sample size statements
Conclusion and Resources
Power Depends on Sample Size

Power = 1 - B = P(reject H_0 | H_1 true)

“Probability of rejecting the null hypothesis if the alternative hypothesis is true.”

More subjects -> higher power
Power is Affected by…..
Variation in the outcome \((o^2)\)
(arrow up) \(o^2 \rightarrow \text{power} \) (arrow up)
Significance level \((\alpha)\)
(arrow up) \(\alpha \rightarrow \text{power} \) (arrow up)
Difference (effect) to be detected \((o)\)
(arrow up) \(o \rightarrow \text{power} \) (arrow up)
One-tailed vs. two-tailed tests
Power is greater in one-tailed tests than in comparable two-tailed tests
Power Changes
2n = 32, 2 sample test, 81% power, o=2, o = 2, a=0.05, 2-sided test
Variance/Standard deviation
o: 2 -> 1 Power: 81% -> 99.99%
o: 2-> 3 Power: 81% -> 47%
Significance level (α)
a : 0.05 -> 0.01 Power: 81% -> 69%
a : 0.05 -> 0.10 Power: 81% -> 94%
Power Changes
2n = 32, 2 sample test, 81% power, o=2, o = 2, a = 0.05, 2-sided test
Difference to be detected (δ)
o : 2 -> 1 Power: 81% -> 29%
o : 2 -> 3 Power: 81% -> 99%
Sample size (n)
n: 32 -> 64 Power: 81% -> 98%
n: 32 -> 28 Power: 81% -> 75%
Two-tailed vs. One-tailed tests
Power: 81% -> 88%
Power should be….?
Phase III: industry minimum = 80%
Some say Type I error = Type II error
Many large “definitive” studies have power around 99.9%
Proteomics/genomics studies: aim for high power because Type II error a bear!
Power Formula
Depends on study design
Not hard, but can be VERY algebra intensive
May want to use a computer program or statistician
Outline
Power
Basic Sample Size
Information
Examples (see text for more)
Changes to the basic formula
Multiple comparisons
Rejected sample size statements
Conclusion and Resources
Basic Sample Size
Changes in the difference of interest have HUGE impacts on sample size
20 point difference -> 25 patients/group
10 point difference -> 100 patients/group
5 point difference -> 400 patients/group
Changes in difference to be detected, α, β, σ, number of samples, if it is a 1- or 2-sided test can all have a large impact on your sample size calculation
Basic Sample Size Information
What to think about before talking to a statistician
What information to take to a statistician
In addition to the background to the project
Nonrandomized?
Non-randomized studies looking for differences or associations
Require larger sample to allow adjustment for confounding factors
Absolute sample size is of interest
Surveys sometimes take % of population approach
Take Away
Study’s primary outcome
Basis for sample size calculation
Secondary outcome variables considered important? Make sure sample size is sufficient
Increase the ‘real’ sample size to reflect loss to follow up, expected response rate, lack of compliance, etc.
Make the link between the calculation and increase
Always round up
Sample size = 10.01; need 11 people
Sample Size in Clinical Trials
Two groups
Continuous outcome
Mean difference
Similar ideas hold for other outcomes
Sample Size Formula

Information
Variables of interest
type of data e.g. continuous, categorical
Desired power
Desired significance level
Effect/difference of clinical importance
Standard deviations of continuous outcome variables
One or two-sided tests
Sample Size & Data Structure
Paired data
Repeated measures
Groups of equal sizes
Hierarchical or nested data
Biomarkers
Validity (of what) studies
Sample Size & Study Design
Randomized controlled trial (RCT)
Block/stratified-block randomized trial
Equivalence trial
Non-randomized intervention study
Observational study
Prevalence study
Measuring sensitivity and specificity
Outline
Power
Basic sample size information
Examples (see text for more)
Changes to the basic formula
Multiple comparisons
Rejected sample size statements
Conclusion and Resources
Phase I: Dose Escalation
Dose limiting toxicity (DLT) must be defined
Decide a few dose levels (e.g. 4)
At least three patients will be treated on each dose level (cohort)
Not a power or sample size calculation issue
Phase I (Old Way)
Enroll 3 patients
If 0 out of 3 patients develop DLT
 Escalate to new dose
If DLT is observed in 1 of 3 patients
 Expand cohort to 6
 Escalate if 0 out of the 3 new patients do not develop DLT (i.e. 1/6 at that dose develop DLT)
Phase I (cont.)
Maximum Tolerated Dose (MTD)
Dose level immediately below the level at which ≥ 2 patients in a cohort of 3 to 6 patients experienced a DLT
Usually go for “safe dose” MTD or a maximum dosage that is pre-specified in the protocol
Phase I
Chart showing phase 1 process
Phase I
Chart showing phase I process
Phase I Note
*Implicitly targets a dose with Pr (Toxicity) < 0.17; if at 1/3+1/3 decide current level is MTD then the Pr (Toxicity) < 0.33
Entry of patients to a new dose level does not occur until all patients in the previous level are beyond a certain time frame where you look for toxicity
Not a power or sample size calculation issue
Phase I
MANY new methods
Several randomize to multiple arms
Several have control arms
Several have 6-15 people per arm
Phase II Designs
Screening of new therapies
Not to prove ‘final’ efficacy, usually
 Efficacy based on surrogate outcome
Sufficient activity to be tested in a randomized study
Issues of safety still important
Small number of patients (still may be in the hundreds total, but maybe less than 100/arm)
Phase II Design Problems
Might be unblinded or single blinded treatment
Placebo effect
Investigator bias
Regression to the mean
Phase II: Two-Stage Optimal Design
Seek to rule out undesirably low response probability
 E.g. only 20% respond (p0=0.20)
Seek to rule out p0 in favor of p1; shows “useful” activity
 E.g. 40% are stable (p1=0.40)
Phase II Example:
Two-Stage Optimal Design
Single arm, two stage, using an optimal design & predefined response
Rule out response probability of 20% \((H_0: p = 0.20)\)
Level that demonstrates useful activity is 40% \((H_1: p = 0.40)\)
\(a = 0.10, B = 0.10\)
Two-Stage Optimal Design
Let \(a = 0.1 \) (10% probability of accepting a poor agent)
Let \(B = 0.1 \) (10% probability of rejecting a good agent)
Charts in Simon (1989) paper with different \(p_1 - p_0 \) amounts and varying \(a \) and \(B \) values
Table from Simon (1989)
Picture of the table from Simon (1989)
Blow up: Simon (1989) Table
Photo of a blow up of Simon (1989) table
Phase II Example
Initially enroll 17 patients. 0-3 of the 17 have a clinical response then stop accrual and assume not an active agent.
If > 4/17 respond, then accrual will continue to 37 patients.
Phase II Example
If 4-10 of the 37 respond this is insufficient activity to continue
If > 11/37 respond then the agent will be considered active
Under this design if the null hypothesis were true (20% response probability) there is a 55% probability of early termination
Sample Size Differences

If the null hypothesis (H_0) is true

Using two-stage optimal design

- On average 26 subjects enrolled
- Using a 1-sample test of proportions
 - 34 patients
- If feasible

Using a 2-sample randomized test of proportions

- 86 patients per group
Phase II
Newer methods are available
Many cite Simon (thus, why we went through it)
Phase II: Historical Controls
Want to double disease X survival from 15.7 months to 31 months.
\(a = 0.05 \), one tailed, \(B = 0.20 \)
Need 60 patients, about 30 in each of 2 arms; can accrue 1/month
Need 36 months of follow-up
Use historical controls
Phase II: Historical Controls
Old data set from 35 patients treated at NCI with disease X, initially treated from 1980 to 1999
Currently 3 of 35 patients alive
Median survival time for historical patients is 15.7 months
Almost like an observational study
Use Dixon and Simon (1988) method for analysis
Phase II Summary
Chart: Blank with spaces to enter phase II summary data
Phase III Survival Example

Primary objective: determine if patients with metastatic melanoma who undergo Procedure A have a different overall survival compared with patients receiving standard of care (SOC)

Trial is a two arm randomized phase III single institution trial
Number of Patients to Enroll?

1:1 ratio between the two arms
80% power to detect a difference between 8 month median survival and 16 month median survival
Two-tailed $\alpha = 0.05$
24 months of follow-up after the last patient has been enrolled
36 months of accrual
Graph:
Figure 1: Number of patients per treatment group; a = .05, B = .80. Dashed line: two sided-tests. Solid line: one-sided tests.
Graph
Phase III Survival

Look at nomograms (Schoenfeld and Richter). Can use formulas

Need 38/arm, so let’s try to recruit 42/arm – total of 84 patients

Anticipate approximately 30 patients/year entering the trial
Graph
Non-Survival Simple Sample Size
Start with 1-arm or 1-sample study
Move to 2-arm study
Study with 3+ arms cheat trick
 Calculate PER ARM sample size for 2-arm study
 Use that PER ARM
 Does not always work; typically ok
1-Sample N Example
Study effect of new sleep aid
1 sample test
Baseline to sleep time after
taking the medication for one
week
Two-sided test, $\alpha = 0.05$,
power = 90%
Difference = 1 (4 hours of
sleep to 5)
Standard deviation = 2 hr
Sleep Aid Example
1 sample test
2-sided test, $a = 0.05$, $1-B = 90\%$
$\sigma = 2\text{hr}$ (standard deviation)
$\sigma = 1\text{hr}$ (difference of interest)
Short Helpful Hints
In humans $n = 12-15$ gives somewhat stable variance
Not about power, about stability
15/arm minimum good rule of thumb
If $n < 20-30$, check t-distribution
Minimum 10 participants/variable
Maybe 100 per variable
Sample Size: Change Effect or Difference
Change difference of interest from 1hr to 2 hr
n goes from 43 to 11
Sample Size:
Iteration and the Use of t

Found $n = 11$ using Z
Use t_{10} instead of Z

t_{n-1} for a simple 1 sample

Recalculate, find $n = 13$
Use t_{12}

Recalculate sample size, find $n = 13$
Done

Sometimes iterate several times
Sample Size: Change Power
Change power from 90% to 80%
n goes from 11 to 8
(Small sample: start thinking about using the t distribution)
Sample Size:
Change Standard Deviation
Change the standard deviation from 2 to 3
n goes from 8 to 18
Sleep Aid Example: 2 Arms
Investigational, Control
Original design (2-sided test, $a = 0.05$, $1 - B = 90\%$, $o = 2\text{hr}$, $o = 1\text{hr}$)
Two sample randomized parallel design
Needed 43 in the one-sample design
In 2-sample need twice that, in each group!
4 times as many people are needed in this design

Graphic: two arrows pointing down in the right corner.
Sleep Aid Example: 2 Arms
Investigational, Control
Original design (2-sided test, $a = 0.05$, $1-B = 90\%, o = 2\text{hr}, o = 1 \text{ hr}$)
Two sample randomized parallel design
Needed 43 in the one-sample design
In 2-sample need twice that, in each group!
4 times as many people are needed in this design
Graphic: Arrow pointed down to an oval. Three other arrows pointed down.
Aside: 5 Arm Study
Sample size per arm = 85
85*5 = 425 total
Similar 5 arm study
Without considering multiple comparisons
Sample Size:
Change Effect or Difference
Change difference of interest from 1hr to 2 hr
n goes from 170 to 44
Sample Size: Change Power
Change power from 90% to 80%
\(n \) goes from 44 to 32
Sample Size:
Change Standard Deviation
Change the standard deviation from 2 to 3
n goes from 32 to 72
Conclusion
Changes in the difference of interest have HUGE impacts on sample size

20 point difference -> 25 patients/group
10 point difference -> 100 patients/group
5 point difference -> 400 patients/group

Changes in difference to be detected, a, B, o, number of samples, if it is a 1- or 2-sided test can all have a large impact on your sample size calculation
Choose your study design

Data on 25 hypertensive men
(mean 220, s=38.6)
20-74 year old male
population: mean serum
cholesterol is 211 mg/ml with
a standard deviation of 46
mg/ml
Example
Calculate power with the numbers given
What is the power to see a 19 point difference in mean cholesterol with 25 people in
Was it a single sample or 2 sample example?
Sample Size Rulers
Graphic: Two examples of Piface Application Selector
• JAVA Sample Size
Graphic: Sample of a JAVA sample size
Put in 1-Sample Example
#s
1 arm, t-test
Sigma (sd) = 38.6
True difference of means = 220-211=9
n=25
2 sided (tailed) alpha = 0.05
 Power=XXXX
90% power
 Solve for sample size n=XXXX
Move the Values Around
Sigma (standard deviation, sd)
Difference between the means
Put in 2-Sample Example
2 arms, t-test
Equal sigma (sd) in each arm = 2
2 sided (tailed) alpha = 0.05
True difference of means = 1
90% power
Solve for sample size
Keep Clicking “OK” Buttons

Graphic: Chart showing sample examples.
Other Designs?
Sample Size:
Matched Pair Designs
Similar to 1-sample formula
Means (paired t-test)
 Mean difference from paired data
 Variance of differences
Proportions
 Based on discordant pairs
Examples in the Text
Several with paired designs
Two and one sample means
Proportions
How to take pilot data and design the next study
Cohen's Effect Sizes
Large (.8), medium (.5), small (.2)
Popular esp. in social sciences
Do NOT use
 Need to think
‘Medium’ yields same sample size regardless of what you are measuring
Take Home: What you need for N
What difference is scientifically important in units – thought, disc.
0.01 inches?
10 mm Hg in systolic BP?
How variable are the measurements (accuracy)?
– Pilot!
 Plastic ruler, Micrometer, Caliper
Take Home: N
Difference (effect) to be detected (o)
Variation in the outcome (o^2)
Significance level (a)
 One-tailed vs. two-tailed tests
Power
Equal/unequal arms
Superiority or equivalence
Unequal #s in Each Group

Ratio of cases to controls
Use if want (upside down V symbol) patients randomized to the treatment arm for every patient randomized to the placebo arm
Take no more than 4-5 controls/case
K:1 Sample Size Shortcut

Use equal variance sample size formula: TOTAL sample size increases by a factor of

\[(k+1)^2/4k\]

Ex: Total sample size for two equal groups = 26; want 2:1 ratio

\[26*(2+1)^2/(4*2) = 26*9/8 = 29.25 \sim 30\]

20 in one group and 10 in the other
Unequal #s in Each Group:
Fixed # of Cases
Case-Control Study
Only so many new devices
Sample size calculation says
n=13 cases and controls are needed
Only have 11 cases!
Want the same precision
\(n_0 = 11 \) cases
\(kn_0 = \# \) of controls
How many controls?
k = 13 / (2*11 – 13) = 13 / 9 = 1.44

\(kn_0 = 1.44 \times 11 \approx 16 \) controls (and 11 cases) = 27 total (controls + cases)

Same precision as 13 controls and 13 cases (26 total)
Number of Events is Important
Cohort of exposed and unexposed people
Relative Risk = R
Prevalence in the unexposed population = TT_1
Formulas and Example
of Covariates and # of Subjects
At least 10 subjects for every variable investigated
 In logistic regression
 No general theoretical justification
 This is stability, not power
 Peduzzi et al., (1985)
 unpredictable biased regression coefficients and variance estimates
Principal component analysis (PCA) (Thorndike 1978 p 184):
 N>10m+50 or even N >m^2 + 50
Balanced Designs:
Easier to Find Power /
Sample Size
Equal numbers in two
groups is the easiest to
handle
If you have more than two
groups, still, equal sample
sizes easiest
Complicated design =
simulations
 Done by the statistician
Outline
Power
Basic Sample Size Information
Examples (see text for more)
Changes to the basic formula
Multiple comparisons
Rejected sample size statements
Conclusion and Resources
Multiple Comparisons

If you have 4 groups

All 2 way comparisons of means

6 different tests

Bonferroni: divide a by # of tests

\[\frac{0.025}{6} \sim 0.0042 \]

Common method; long literature

High-throughput laboratory tests
DNA Microarrays/Proteomics

Same formula (Simon et al. 2003)

\[a = 0.001 \text{ and } B = 0.05 \]

Possibly stricter

Simulations (Pepe 2003)

based on pilot data

\[k_0 = \# \text{ genes going on for further study} \]

\[k_1 = \text{rank of genes want to ensure you get} \]

\[P[\text{Rank (g) < } k_0 \mid \text{True Rank (g) < } k_1] \]
Outline
Power
Basic Sample Size Information
Examples (see text for more)
Changes to the basic formula
Multiple comparisons
Rejected sample size statements
Conclusion and Resources
Me, too! No, Please Justify N
"A previous study in this area recruited 150 subjects and found highly significant results (p=0.014), and therefore a similar sample size should be sufficient here."
Previous studies may have been 'lucky' to find significant results, due to random sampling variation
No Prior Information
"Sample sizes are not provided because there is no prior information on which to base them."

Find previously published information
Conduct small pre-study
If a very preliminary pilot study, sample size calculations not usually necessary
Variance?
No prior information on standard deviations
Give the size of difference that may be detected in terms of number of standard deviations
Number of Available Patients
"The clinic sees around 50 patients a year, of whom 10% may refuse to take part in the study. Therefore over the 2 years of the study, the sample size will be 90 patients. "

Although most studies need to balance feasibility with study power, the sample size should not be decided on the number of available patients alone. If you know # of patients is an issue, can phrase in terms of power
Conclusions:
What Impacts Sample Size?

Difference of interest
- 20 point difference -> 25 patients/group
- 5 point difference -> 400 patients/group

o, a, B

Number of arms or samples
1- or 2-sided test

Total Sample Size 2-Armed/Group/Sample Test
No Estimate of the Variance?
Make a sample size or power table
Make a graph
Use a wide variety of possible standard deviations
Protect with high sample size if possible
Top 10 Statistics Questions
Exact mechanism to randomize patients
Why stratify? (EMEA re: dynamic allocation
Blinded/masked personnel
Endpoint assessment
Top 10 Statistics Questions

Each hypothesis
 Specific analyses
 Specific sample size
How / if adjusting for multiple comparisons
Effect modification
Top 10 Statistics Questions

Interim analyses (if yes)
 What, when, error spending model / stopping rules
 Accounted for in the sample size?

Expected drop out (%)
How to handle drop outs and missing data in the analyses?
Top 10 Statistics Questions

Repeated measures / longitudinal data

Use a linear mixed model instead of repeated measures ANOVA

Many reasons to NOT use repeated measures ANOVA;
few reasons to use

Similarly generalized estimating equations (GEE) if appropriate
Analysis Follows Design
Questions -> Hypotheses ->
Experimental Design ->
Samples ->
Data -> Analyses -
> Conclusions

Take all of your design information to a statistician early and often
 Guidance
 Assumptions
Resources: General Books
LWW
Rosenthal (2006) *Struck by Lightning: The curious world of probabilities*
Oxford University Press
Blackwell, Oxford
Resources:
General/Text Books
Verlag
Sample Size Specific Tables
Categorical data: Lemeshow et al. (1996) Adequacy of sample size in health studies. Wiley
Resources: Articles
Resources: Articles
Resources: FDA Guidance
http://www.fda.gov/cdrh/ode/odeot476.html (devices, non-diagnostic)
http://www.fda.gov/cdrh/osb/guidance/1620.html (diagnostics)
And all the ones listed before
Resources: URLs
Sample size calculations simplified
http://www.tufts.edu/~gdallal/SIZE.HTM
Stat guide: research grant applicants, St. George’s Hospital Medical School
(http://www.sgul.ac.uk/depts/chs/chs_research/stat_guide/guide.cfm)
http://tinyurl.com/2mh42a
Software: nQuery, EpiTable, SeqTrial, PS
(http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/PowerSampleSize)
http://tinyurl.com/zoysm
Earlier lectures
http://www.cs.uiowa.edu/~rlenth/Power/
Questions?