Principles of Hypothesis Testing for Public Health

Laura Lee Johnson, Ph.D.
Statistician
National Center for Complementary and Alternative Medicine
johnslau@mail.nih.gov
Fall 2011

Answers to Questions I Usually Get Around Now

• ITT is like generalizing to real life
• I am not a fan of stratification
 ▪ Except by clinic/site
 ▪ Not everyone agrees with me
• OK to adjust for (some) variables
 ▪ Baseline covariates
 ▪ Cannot stratify a continuous variable
 ▪ At least rarely can you do it well
 ▪ Some variables are not ok, or you just upgraded to a fancy model!

Objectives

• Formulate questions for statisticians and epidemiologists using
 ▪ P-value
 ▪ Power
 ▪ Type I and Type II errors
• Identity a few commonly used statistical tests for comparing two groups
Estimation and Hypotheses

- Inference
- How we use Hypothesis Testing
 - Estimation
 - Distributions
 - Hypothesis testing
 - Sides and Tails

Statistical Inference

- Inferences about a population are made on the basis of results obtained from a sample drawn from that population
- Want to talk about the larger population from which the subjects are drawn, not the particular subjects!
Use Hypothesis Testing

- Designing a study
- Reviewing the design of other studies
 - Grant or application review (e.g. NIH study section, IRB)
- Interpreting study results
- Interpreting other’s study results
 - Reviewing a manuscript or journal
 - Interpreting the news

I Use Hypothesis Testing

- Do everything on previous slide
- Analyze the data to find the results
 - Program formulas not presented here in detail
- Anyone can analyze the data, too, but be careful

Analysis Follows Design

Questions → Hypotheses →
Experimental Design → Samples →
Data → Analyses → Conclusions
What Do We Test

- Effect or Difference we are interested in
 - Difference in Means or Proportions
 - Odds Ratio (OR)
 - Relative Risk (RR)
 - Correlation Coefficient
- Clinically important difference
 - Smallest difference considered biologically or clinically relevant
- Medicine: usually 2 group comparison of population means

Estimation and Hypotheses

✓ Inference
✓ How we use Hypothesis Testing
 - Estimation
 - Distributions
 - Hypothesis testing
 - Sides and Tails

Estimation: From the Sample

- Point estimation
 - Mean
 - Median
 - Change in mean/median
- Interval estimation
 - Variation (e.g. range, σ², σ, σ/√n)
 - 95% Confidence interval
Pictures, Not Numbers

• Scatter plots
• Bar plots (use a table)
• Histograms
• Box plots

• *Not Estimation*
 • See the data and check assumptions

Graphs and Tables

• A picture is worth a thousand t-tests
• Vertical (Y) axis can be misleading

Like the Washington Post
Weather, Though
Estimation and Hypotheses

- Inference
- How we use Hypothesis Testing
- Estimation
 - Distributions
 - Hypothesis testing
 - Sides and Tails

Distributions

- Parametric tests are based on distributions
 - Normal Distribution (standard normal, bell curve, Z distribution)
 - Non-parametric tests still have assumptions, but not based on distributions

2 of the Continuous Distributions

- Normal distribution: \(N(\mu, \sigma^2) \)
 - \(\mu = \) mean, \(\sigma^2 = \) variance
 - Z or standard normal = \(N(0,1) \)
- \(t \) distribution: \(t_\omega \)
 - \(\omega = \) degrees of freedom (df)
 - Usually a function of sample size
 - Mean = \(\bar{X} \) (sample mean)
 - Variance = \(s^2 \) (sample variance)
Binary Distribution

- Binomial distribution: $B(n, p)$
 - Sample size = n
 - Proportion ‘yes’ = p
 - Mean = np
 - Variance = $np(1-p)$
- Can do exact or use Normal

Many More Distributions

- Not going to cover
- Poisson
- Log normal
- Gamma
- Beta
- Weibull
- Many more

Estimation and Hypotheses

- Inference
- How we use Hypothesis Testing
- Estimation
- Distributions
 - Hypothesis Testing
 - Sides and Tails
Hypothesis Testing

- Null hypothesis (H₀)
- Alternative hypothesis (H₁ or H₀)

Null Hypothesis

- For superiority studies we think for example
 - Average systolic blood pressure (SBP) on Drug A is different than average SBP on Drug B
- Null of that? Usually that there is no effect
 - Mean = 0
 - OR = 1
 - RR = 1
 - Correlation Coefficient = 0
- Sometimes compare to a fixed value so Null
 - Mean = 120
- If an equivalence trial, look at NEJM paper or other specific resources

Alternative Hypothesis

- Contradicts the null
- There is an effect
- What you want to prove
- If equivalence trial, special way to do this
Example Hypotheses

- H_0: $\mu_1 = \mu_2$
- H_A: $\mu_1 \neq \mu_2$
 - Two-sided test
- H_A: $\mu_1 > \mu_2$
 - One-sided test

1 vs. 2 Sided Tests

- Two-sided test
 - No *a priori* reason 1 group should have stronger effect
 - Used for most tests
- One-sided test
 - Specific interest in only one direction
 - Not scientifically relevant/interesting if reverse situation true

Use a 2-Sided Test

- Almost always
- If you use a one-sided test
 - Explain yourself
 - Penalize yourself on the alpha
 - 0.05 2-sided test becomes a 0.025 1-sided test
Never “Accept” Anything

- Reject the null hypothesis
- Fail to reject the null hypothesis

- Failing to reject the null hypothesis does NOT mean the null (H₀) is true
- Failing to reject the null means
 - Not enough evidence in your sample to reject the null hypothesis
 - In one sample saw what you saw

Outline

- Estimation and Hypotheses
 - How to Test Hypotheses
 - Confidence Intervals
 - Regression
 - Error
 - Diagnostic Testing
 - Misconceptions

Experiment

- Develop hypotheses
- Collect sample/Conduct experiment
 - Calculate test statistic
 - Compare test statistic with what is expected when H₀ is true
Information at Hand

- 1 or 2 sample test?
- Outcome variable
 - Binary, Categorical, Ordered, Continuous, Survival
- Population
- Numbers (e.g. mean, standard deviation)

Example: Hypertension/Cholesterol

- Mean cholesterol hypertensive men
- Mean cholesterol in male general (normotensive) population (20-74 years old)
- In the 20-74 year old male population the mean serum cholesterol is 211 mg/ml with a standard deviation of 46 mg/ml

One Sample: Cholesterol Sample Data

- Have data on 25 hypertensive men
- Mean serum cholesterol level is 220mg/ml ($\bar{X} = 220$ mg/ml)
 - Point estimate of the mean
- Sample standard deviation: $s = 38.6$ mg/ml
 - Point estimate of the variance = s^2
Compare Sample to Population

• Is 25 enough?
 ▪ Next lecture we will discuss
• What difference in cholesterol is clinically or biologically meaningful?
• Have an available sample and want to know if hypertensives are different than general population

Situation

• May be you are reading another person’s work
• May be already collected data
• If you were designing up front you would calculate the sample size
 ▪ But for now, we have 25 people

Cholesterol Hypotheses

• $H_0: \mu_1 = \mu_2$
• $H_0: \mu = 211 \text{ mg/ml}$
 ▪ $\mu =$ POPULATION mean serum cholesterol for male hypertensives
 ▪ Mean cholesterol for hypertensive men = mean for general male population
• $H_A: \mu_1 \neq \mu_2$
• $H_A: \mu \neq 211 \text{ mg/ml}$
Cholesterol Sample Data

- Population information (general)
 - $\mu = 211$ mg/ml
 - $\sigma = 46$ mg/ml ($\sigma^2 = 2116$)
- Sample information (hypertensives)
 - $\bar{X} = 220$ mg/ml
 - $s = 38.6$ mg/ml ($s^2 = 1489.96$)
 - $N = 25$

Experiment

- Develop hypotheses
- Collect sample/Conduct experiment
 - Calculate test statistic
 - Compare test statistic with what is expected when H_0 is true

Test Statistic

- Basic test statistic for a mean
 \[
 \text{test statistic} = \frac{\text{point estimate of } \mu - \text{target value of } \mu}{\sigma_{\text{point estimate of } \mu}}
 \]
 - $\sigma = \text{standard deviation (sometimes use } \sigma/\sqrt{n})$
 - For 2-sided test: Reject H_0 when the test statistic is in the upper or lower $100\alpha/2\%$ of the reference distribution
 - What is α?
Vocabulary

- Types of errors
 - Type I (α) (false positives)
 - Type II (β) (false negatives)
- Related words
 - Significance Level: α level
 - Power: $1 - \beta$

Unknown Truth and the Data

<table>
<thead>
<tr>
<th>Truth Data</th>
<th>H_0 Correct</th>
<th>H_A Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decide H_0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>“fail to reject H_0”</td>
<td>$1 - \alpha$</td>
<td>β</td>
</tr>
<tr>
<td>Decide H_A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>“reject H_0”</td>
<td>α</td>
<td>$1 - \beta$</td>
</tr>
</tbody>
</table>

α = significance level
$1 - \beta$ = power

Type I Error

- $\alpha = P(\text{reject } H_0 | H_0 \text{ true})$
- Probability reject the null hypothesis given the null is true
- False positive
- Probability reject that hypertensives’ $\mu=211$mg/ml when in truth the mean cholesterol for hypertensives is 211
Type II Error (or, 1-Power)

• \(\beta = P(\text{do not reject } H_0 | H_1 \text{ true }) \)
• False Negative
• Probability we NOT reject that male hypertensives’ cholesterol is that of the general population when in truth the mean cholesterol for hypertensives is different than the general male population

Power

• Power = 1-\(\beta = P(\text{reject } H_0 | H_1 \text{ true }) \)
• Everyone wants high power, and therefore low Type II error

Cholesterol Sample Data

• \(N = 25 \)
• \(\bar{X} = 220 \text{ mg/ml} \)
• \(\mu = 211 \text{ mg/ml} \)
• \(s = 38.6 \text{ mg/ml} (s^2 = 1489.96) \)
• \(\sigma = 46 \text{ mg/ml} (\sigma^2 = 2116) \)
• \(\alpha = 0.05 \)
• Power? Next lecture!
Z Test Statistic and N(0,1)

- Want to test continuous outcome
- Known variance
- Under $H_0: \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1)$

Therefore,

Reject H_0 if $\left| \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \right| > 1.96$ (gives a 2-sided $\alpha=0.05$ test)

Reject H_0 if $\bar{X} > \mu_0 + 1.96 \frac{\sigma}{\sqrt{n}}$ or $\bar{X} < \mu_0 - 1.96 \frac{\sigma}{\sqrt{n}}$

Experiment

- Develop hypotheses
- Collect sample/Conduct experiment
- Calculate test statistic
 - Compare test statistic with what is expected when H_0 is true
 - Reference distribution
 - Assumptions about distribution of outcome variable

Z or Standard Normal Distribution
How to test?

- **Rejection interval**
 - Like a confidence interval but centered on the null mean
- **Z test or Critical Value**
 - $N(0,1)$ distribution and alpha
- **t test or Critical Value**
 - t distribution and alpha
- **P-value**
- **Confidence interval**
General Formula \((1-\alpha)\%\) Rejection Region for Mean Point Estimate
\[
\left(\mu - \frac{Z_{1-\alpha/2} \sigma}{\sqrt{n}}, \mu + \frac{Z_{1-\alpha/2} \sigma}{\sqrt{n}} \right)
\]

- Note that \(+Z(\alpha/2) = -Z(1-\alpha/2)\)
- 90\% CI: \(Z = 1.645\)
- 95\% CI: \(Z = 1.96\)
- 99\% CI: \(Z = 2.58\)

Cholesterol Rejection Interval Using \(H_0\) Population Information

\[N(211, 46^2) \]
\[193 \quad 211 \quad 229 \]

Normal Distribution

- Reject \(H_0\) if 220 is outside of (193, 229)

Cholesterol Rejection Interval Using \(H_0\) Sample Information

\[t (df=24, 211, 38.6^2) \]
\[195 \quad 211 \quad 227 \]

\(t\) Distribution (df = 24)

- Reject \(H_0\) if 220 is outside of (195, 227)
Side Note on t vs. Z

- If $s = \sigma$ then the t value will be larger than the Z value
- BUT, here our sample standard deviation (38.6) was quite a bit smaller than the population sd (46)
 - HERE intervals using t look smaller than Z intervals BUT
 - Because of sd, not distribution

How to test?

✓ Rejection interval
 - Like a confidence interval but centered on the null mean
- Z test or Critical Value
 - $\text{N}(0,1)$ distribution and alpha
- t test or Critical Value
 - t distribution and alpha
- P-value
- Confidence interval

Z-test: Do Not Reject H_0

$$|Z| = \left| \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \right| = \frac{|220 - 211|}{46 / \sqrt{25}} = 0.98 < 1.96$$
Determining Statistical Significance: Critical Value Method

- Compute the test statistic Z (0.98)
- Compare to the critical value
 - Standard Normal value at α-level (1.96)
- If $|\text{test statistic}| > \text{critical value}$
 - Reject H_0
 - Results are statistically significant
- If $|\text{test statistic}| < \text{critical value}$
 - Do not reject H_0
 - Results are not statistically significant

T-Test Statistic

- Want to test continuous outcome
- Unknown variance (s, not σ)
- Under H_0 $\frac{\bar{X} - \mu_0}{s/\sqrt{n}} \sim t_{(n-1)}$
- Critical values: statistics books or computer
- t-distribution approximately normal for degrees of freedom (df) >30
Cholesterol: t-statistic

- Using data \(T = \frac{\bar{X} - \mu_0}{s / \sqrt{n}} = \frac{220 - 211}{38.6 / \sqrt{25}} = 1.17 \)

- For \(\alpha = 0.05 \), two-sided test from \(t(24) \) distribution the critical value = 2.064
- \(| T | = 1.17 < 2.064 \)
- The difference is not statistically significant at the \(\alpha = 0.05 \) level
- Fail to reject \(H_0 \)

Almost all ‘Critical Value’ Tests: Exact Same Idea

- Paired tests
- 2-sample tests
- Continuous data
- Binary data

- See appendix at end of slides

How to test?

- Rejection interval
 - Like a confidence interval but centered on the null mean
- Z test or Critical Value
 - \(N(0,1) \) distribution and alpha
- t test or Critical Value
 - \(t \) distribution and alpha
- P-value
- Confidence interval
P-value

- Smallest α the observed sample would reject H_0
- Given H_0 is true, probability of obtaining a result as extreme or more extreme than the actual sample
- MUST be based on a model
 - Normal, t, binomial, etc.

Cholesterol Example

- P-value for two sided test
- $\bar{X} = 220$ mg/ml, $\sigma = 46$ mg/ml
- $n = 25$
- $H_0: \mu = 211$ mg/ml
- $H_A: \mu \neq 211$ mg/ml

$$2 \cdot P[\bar{X} > 220] = 0.33$$

Determining Statistical Significance: P-Value Method

- Compute the exact p-value (0.33)
- Compare to the predetermined α-level (0.05)
- If p-value < predetermined α-level
 - Reject H_0
 - Results are statistically significant
- If p-value > predetermined α-level
 - Do not reject H_0
 - Results are not statistically significant
P-value Interpretation Reminders

• Measure of the strength of evidence in the data that the null is not true

• A random variable whose value lies between 0 and 1

• NOT the probability that the null hypothesis is true.

How to test?

✓ Rejection interval
 ▪ Like a confidence interval but centered on the null mean

✓ Z test or Critical Value
 ▪ N(0,1) distribution and alpha

✓ t test or Critical Value
 ▪ t distribution and alpha

✓ P-value
 ▪ Confidence interval

Outline

✓ Estimation and Hypotheses
✓ How to Test Hypotheses
 ➢ Confidence Intervals
 • Regression
 • Error
 • Diagnostic Testing
 • Misconceptions
General Formula \((1-\alpha)\%\) CI for \(\mu\)
\[
\left(\bar{X} - \frac{Z_{1-\alpha/2} \sigma}{\sqrt{n}}, \bar{X} + \frac{Z_{1-\alpha/2} \sigma}{\sqrt{n}} \right)
\]

- Construct an interval around the point estimate
- Look to see if the population/null mean is inside

Cholesterol Confidence Interval Using Population Variance \((Z)\)

CI for the Mean, Unknown Variance

- Pretty common
- Uses the t distribution
- Degrees of freedom

\[
\left(\bar{X} - \frac{t_{1-\alpha/2, df} \sigma}{\sqrt{n}}, \bar{X} + \frac{t_{1-\alpha/2, df} \sigma}{\sqrt{n}} \right) = \left(220 - \frac{2.064 \times 38.6}{\sqrt{25}}, 220 + \frac{2.064 \times 38.6}{\sqrt{25}} \right) = (204.06, 235.93)\]
Cholesterol Confidence Interval Using Sample Data (t)

![Graph showing a bell curve with data points 198, 204, 212, 220, 228, 236, 242.]

But I Have All Zeros!

Calculate 95% upper bound
- Known # of trials without an event (2.11 van Belle 2002, Louis 1981)
- Given no observed events in \(n \) trials, 95% upper bound on rate of occurrence is \(3 / (n + 1) \)
 - No fatal outcomes in 20 operations
 - 95% upper bound on rate of occurrence = \(3 / (20 + 1) = 0.143 \), so the rate of occurrence of fatalities could be as high as 14.3%

Hypothesis Testing and Confidence Intervals
- Hypothesis testing focuses on where the sample mean is located
- Confidence intervals focus on plausible values for the population mean
- In general, the best way to estimate a confidence interval is to bootstrap (details: see a statistician)
CI Interpretation

- Cannot determine if a particular interval does/does not contain true mean
- Can say in the long run
 - Take many samples
 - Same sample size
 - From the same population
 - 95% of similarly constructed confidence intervals will contain true mean
- Think about meta analyses

Interpret a 95% Confidence Interval (CI) for the population mean, μ

- “If we were to find many such intervals, each from a different random sample but in exactly the same fashion, then, in the long run, about 95% of our intervals would include the population mean, μ, and 5% would not.”

Do NOT interpret a 95% CI...

- “There is a 95% probability that the true mean lies between the two confidence values we obtained from a particular sample”
- “We can say that we are 95% confident that the true mean does lie between these two values.”
- Overlapping CIs do NOT imply non-significance
Take Home: Hypothesis Testing

- Many ways to test
 - Rejection interval
 - Z test, t test, or Critical Value
 - P-value
 - Confidence interval
- For this, all ways will agree
 - If not: math wrong, rounding errors
- Make sure interpret correctly

Take Home Hypothesis Testing

- How to turn questions into hypotheses
- Failing to reject the null hypothesis DOES NOT mean that the null is true
- Every test has assumptions
 - A statistician can check all the assumptions
 - If the data does not meet the assumptions there are non-parametric versions of tests (see text)

Take Home: CI

- Meaning/interpretation of the CI
- How to compute a CI for the true mean when variance is known (normal model)
- How to compute a CI for the true mean when the variance is NOT known (t distribution)
- In practice use Bootstrap
Take Home: Vocabulary

- Null Hypothesis: H_0
- Alternative Hypothesis: H_1 or H_a or H_A
- Significance Level: α level
- Acceptance/Rejection Region
- Statistically Significant
- Test Statistic
- Critical Value
- P-value, Confidence Interval

Outline

- Estimation and Hypotheses
- How to Test Hypotheses
- Confidence Intervals
- **Regression**
 - Error
 - Diagnostic Testing
 - Misconceptions

Regression

- Continuous outcome
 - Linear
- Binary outcome
 - Logistic
- Many other types
Linear regression

- Model for simple linear regression
 - $Y_i = \beta_0 + \beta_1 x_{i1} + \varepsilon_i$
 - $\beta_0 =$ intercept
 - $\beta_1 =$ slope
- Assumptions
 - Observations are independent
 - Normally distributed with constant variance
- Hypothesis testing
 - $H_0: \beta_1 = 0$ vs. $H_A: \beta_1 \neq 0$

In Order of Importance

1. Independence
2. Equal variance
3. Normality

(for ANOVA and linear regression)

More Than One Covariate

- $Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \varepsilon_i$
- $SBP = \beta_0 + \beta_1 Drug + \beta_2 Male + \beta_3 Age$
- β_1
 - Association between Drug and SBP
 - Average difference in SBP between the Drug and Control groups, given sex and age
Testing?

- Each β has a p-value associated with it
- Each model will have an F-test
- Other methods to determine fit
 - Residuals
- See a statistician and/or take a biostatistics class. Or 3.

Repeated Measures (3 or more time points)

- Do NOT use repeated measures AN(C)OVA
 - Assumptions quite stringent
- Talk to a statistician
 - Mixed model
 - Generalized estimating equations
 - Other

An Aside: Correlation

- Range: -1 to 1
- Test is correlation is $\neq 0$
- With $N=1000$, easy to have highly significant ($p<0.001$) correlation $= 0.05$
 - Statistically significant that is
 - No where CLOSE to meaningfully different from 0
- Partial Correlation Coefficient
Do Not Use Correlation. Use Regression

- Some fields: Correlation still popular
 - Partial regression coefficients
- High correlation is > 0.8 (in absolute value). Maybe 0.7
- Never believe a p-value from a correlation test
- Regression coefficients are more meaningful

Analysis Follows Design

Questions → Hypotheses →
Experimental Design → Samples →
Data → Analyses → Conclusions

Outline

✓ Estimation and Hypotheses
✓ How to Test Hypotheses
✓ Confidence Intervals
✓ Regression
➢ Error
• Diagnostic Testing
• Misconceptions
Is α or β more important?

- Depends on the question
- Most will say protect against Type I error
 - Multiple comparisions
- Need to think about individual and population health implications and costs

Omics

- False negative (Type II error)
 - Miss what could be important
 - Are these samples going to be looked at again?
- False positive (Type I error)
 - Waste resources following dead ends

HIV Screening

- False positive
 - Needless worry
 - Stigma
- False negative
 - Thinks everything is ok
 - Continues to spread disease
- For cholesterol example?
What do you need to think about?
• Is it worse to treat those who truly are not ill or to not treat those who are ill?
• That answer will help guide you as to what amount of error you are willing to tolerate in your trial design

Outline
✓ Estimation and Hypotheses
✓ How to Test Hypotheses
✓ Confidence Intervals
✓ Regression
✓ Error
➢ Diagnostic Testing
• Misconceptions

Little Diagnostic Testing Lingo
• False Positive/False Negative (α, β)
• Positive Predictive Value (PPV)
 ▪ Probability diseased given POSITIVE test result
• Negative Predictive Value (NPV)
 ▪ Probability NOT diseased given NEGATIVE test result
• Predictive values depend on disease prevalence
Sensitivity, Specificity

- Sensitivity: how good is a test at correctly IDing people who have disease
 - Can be 100% if you say everyone is ill (all have positive result)
 - Useless test with bad Specificity
- Specificity: how good is the test at correctly IDing people who are well

Example: Western vs. ELISA

- 1 million people
- ELISA Sensitivity = 99.9%
- ELISA Specificity = 99.9%
- 1% prevalence of infection
 - 10,000 positive by Western (gold standard)
 - 9990 true positives (TP) by ELISA
 - 10 false negatives (FN) by ELISA

1% Prevalence

- 990,000 not infected
 - 989,010 True Negatives (TN)
 - 990 False Positives (FP)
- Without confirmatory test
 - Tell 990 or ~0.1% of the population they are infected when in reality they are not
 - PPV = 91%, NPV = 99.999%
1% Prevalence

- 10,980 total test positive by ELISA
 - 9,990 true positive
 - 990 false positive
- 9,990/10,980 = probability diseased GIVEN positive by ELISA = PPV = 0.91 = 91%
- 989,020 total test negatives by ELISA
 - 989,010 true negatives
 - 10 false negatives
- 989,010/989,020 = NPV = 99.999%

0.1% Prevalence

- 1,000 infected – ELISA picks up 999
 - 1 FN
- 999,000 not infected
 - 989,001 True Negatives (TN)
 - 999 False Positives (FP)
- Positive predictive value = 50%
- Negative predictive value = 99.999%

10% Prevalence

- 99% PPV
- 99.99% NPV
Prevalence Matters
(Population You Sample to Estimate Prevalence, too)
• Numbers look “good” with high prevalence
 ▪ Testing at STD clinic in high risk populations
• Low prevalence means even very high sensitivity and specificity will result in middling PPV
• Calculate PPV and NPV for 0.01% prevalence found in female blood donors

Prevalence Matters
• PPV and NPV tend to come from good cohort data
• Can estimate PPV/NPV from case control studies but the formulas are hard and you need to be REALLY sure about the prevalence
 ▪ Triple sure

High OR
Does Not a Good Test Make
• Diagnostic tests need separation
• ROC curves
 ▪ Not logistic regression with high OR
• Strong association between 2 variables does NOT mean good prediction of separation
What do you need to think about?

• How good does the test need to be?
 - 96% sensitivity and 10% specificity?
 - 66% AUC? (What is that?)

• Guide you as to what amount of differentiation, levels of sensitivity, specificity, PPV and NPV you are willing to tolerate in your trial design

Outline

✓ Estimation and Hypotheses
✓ How to Test Hypotheses
✓ Confidence Intervals
✓ Regression
✓ Error
✓ Diagnostic Testing
 ➢ Mistakes & Misconceptions

Avoid Common Mistakes: Hypothesis Testing

• Mistake: Have paired data and do not do a paired test OR do not have paired data and do a paired test
• If you have paired data, use a paired test
 - If you don’t then you can lose power
• If you do NOT have paired data, do NOT use a paired test
 - You can have the wrong inference
Avoid Common Mistakes: Hypothesis Testing

- Mistake: assume independent measurements
- Tests have assumptions of independence
 - Taking multiple samples per subject? Statistician MUST know
 - Different statistical analyses MUST be used and they can be difficult!
- Mistake: ignore distribution of observations
 - Histogram of the observations
 - Highly skewed data - t test and even non-parametric tests can have incorrect results

Avoid Common Mistakes: Hypothesis Testing

- Mistake: Assume equal variances (and the variances are not equal)
 - Did not show variance test
 - Not that good of a test
 - ALWAYS graph your data first to assess symmetry and variance
- Mistake: Not talking to a statistician

Estimates and P-Values

- Study 1: 25±9
 - Stat sig at the 1% level
- Study 2: 10±9
 - Not statistically significant (ns)
- 25 vs. 10 wow a big difference between these studies!
 - Um, no. 15±12.7
Comparing A to B

- **Appropriate**
 - Statistical properties of A-B
 - Statistical properties of A/B
- **NOT Appropriate**
 - Statistical properties of A
 - Statistical properties of B
 - Look they are different!

Not a big difference? 15?!?

- Distribution of the difference
 - 15 ± 12.7
 - Not statistically significant
 - Standard deviations! Important.
- Study 3 has much larger sample size!
 - 2.5 ± 0.9

3 Studies. 3 Answers, Maybe

- Study # 3 is statistically significant
- Difference between study 3 and the other studies
 - Statistical
 - Different magnitudes
- Does study 3 replicate study 1?
- Is it all sample size?
(Mis)conceptions

- P-value = inferential tool? Yes
 - Helps demonstrate that population means in two groups are not equal
- Smaller p-value → larger effect? No
 - Effect size is determined by the difference in the sample mean or proportion between 2 groups

(Mis)conceptions

- A small p-value means the difference is statistically significant, not that the difference is clinically significant. YES
 - A large sample size can help get a small p-value. YES, so do not be tricked.
- Failing to reject H₀ means what?
 - There is not enough evidence to reject H₀ YES
 - H₀ is true! NO NO NO NO!

Analysis Follows Design

Questions → Hypotheses →
Experimental Design → Samples →
Data → Analyses → Conclusions
Questions?

Appendix

• Formulas for Critical Values
• Layouts for how to choose a test

Do Not Reject H_0

$$|Z| = \left| \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \right| = \frac{220 - 211}{46 / \sqrt{25}} = 0.98 < 1.96$$

$220 = \bar{X} > \mu_0 + 1.96 \frac{\sigma}{\sqrt{n}} = 211 + 1.96 \times \frac{46}{\sqrt{25}} = 228.03$ NO!

$220 = \bar{X} < \mu_0 - 1.96 \frac{\sigma}{\sqrt{n}} = 211 - 1.96 \times \frac{46}{\sqrt{25}} = 192.97$ NO!
Paired Tests: Difference
Two Continuous Outcomes

• Exact same idea
• Known variance: Z test statistic
• Unknown variance: t test statistic
• \(H_0 : \mu_d = 0 \) vs. \(H_A : \mu_d \neq 0 \)
• Paired Z-test or Paired t-test

\[
Z = \frac{\bar{d}}{\sigma / \sqrt{n}} \quad \text{or} \quad T = \frac{\bar{d}}{s / \sqrt{n}}
\]

2 Samples: Same Variance
+ Sample Size Calculation Basis

• Unpaired - Same idea as paired
• Known variance: Z test statistic
• Unknown variance: t test statistic
• \(H_0 : \mu_1 = \mu_2 \) vs. \(H_A : \mu_1 \neq \mu_2 \)
 • \(H_0 : \mu_1 - \mu_2 = 0 \) vs. \(H_A : \mu_1 - \mu_2 \neq 0 \)
• Assume common variance

\[
Z = \frac{\bar{x} - \bar{y}}{\sigma \sqrt{1/n + 1/m}} \quad \text{or} \quad T = \frac{\bar{x} - \bar{y}}{s \sqrt{1/n + 1/m}}
\]

2 Sample Unpaired Tests:
2 Different Variances

• Same idea
• Known variance: Z test statistic
• Unknown variance: t test statistic
• \(H_0 : \mu_1 = \mu_2 \) vs. \(H_A : \mu_1 \neq \mu_2 \)
• \(H_0 : \mu_1 - \mu_2 = 0 \) vs. \(H_A : \mu_1 - \mu_2 \neq 0 \)

\[
Z = \frac{\bar{x} - \bar{y}}{\sqrt{\sigma_1^2 / n + \sigma_2^2 / m}} \quad \text{or} \quad T = \frac{\bar{x} - \bar{y}}{\sqrt{s_1^2 / n + s_2^2 / m}}
\]
One Sample Binary Outcomes

- Exact same idea
- For large samples
 - Use Z test statistic
 - Set up in terms of proportions, not means

\[
Z = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}}
\]

Two Population Proportions

- Exact same idea
- For large samples use Z test statistic

\[
Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n} + \frac{\hat{p}_2(1 - \hat{p}_2)}{m}}}
\]

Normal/Large Sample Data?
No
Yes Binomial?
No
Yes Independent?
No Nonparametric test
Yes Expected ≥5
No McNemar’s test
Yes 2 sample Z test for proportions or contingency table
No Fisher’s Exact test
Normal/Large Sample Data?
 Yes
 Inference on means?
 Yes
 Independent?
 Yes
 Variance known?
 Yes
 Z test
 No
 Variances equal?
 Yes
 T test w/ pooled variance
 No
 T test w/ unequal variance
 No
 Paired t
 No
 Inference on variance?
 Yes
 F test for variances
 No
 No