Principles of Hypothesis Testing for Public Health

Laura Lee Johnson, Ph.D.
Statistician
National Center for Complementary and Alternative Medicine

johnslau@mail.nih.gov
Fall 2011
Answers to Questions
I Usually Get Around Now

• ITT is like generalizing to real life
• I am not a fan of stratification
 ▪ Except by clinic/site
 ▪ Not everyone agrees with me
• OK to adjust for (some) variables
 ▪ Baseline covariates
 ▪ Cannot stratify a continuous variable
 ▪ At least rarely can you do it well
 ▪ Some variables are not ok, or you just upgraded to a fancy model!
Objectives

• Formulate questions for statisticians and epidemiologists using
 ▪ P-value
 ▪ Power
 ▪ Type I and Type II errors
• Identity a few commonly used statistical tests for comparing two groups
Outline

- Estimation and Hypotheses
 - How to Test Hypotheses
 - Confidence Intervals
 - Regression
 - Error
 - Diagnostic Testing
 - Misconceptions
 - Appendix
Estimation and Hypotheses

- Inference
- *How we use Hypothesis Testing*
 - Estimation
 - Distributions
 - Hypothesis testing
 - Sides and Tails
Statistical Inference

• Inferences about a population are made on the basis of results obtained from a sample drawn from that population

• Want to talk about the larger population from which the subjects are drawn, not the particular subjects!
Use Hypothesis Testing

• Designing a study
• Reviewing the design of other studies
 ▪ Grant or application review (e.g. NIH study section, IRB)
• Interpreting study results
• Interpreting other’s study results
 ▪ Reviewing a manuscript or journal
 ▪ Interpreting the news
I Use Hypothesis Testing

- Do everything on previous slide
- Analyze the data to find the results
 - Program formulas not presented here in detail
- Anyone can analyze the data, too, but be careful
Analysis Follows Design

Questions → Hypotheses → Experimental Design → Samples → Data → Analyses → Conclusions
What Do We Test

• Effect or *Difference* we are interested in
 ▪ Difference in Means or Proportions
 ▪ Odds Ratio (OR)
 ▪ Relative Risk (RR)
 ▪ Correlation Coefficient

• Clinically important difference
 ▪ Smallest difference considered biologically or clinically relevant

• Medicine: usually 2 group comparison of population means
Estimation and Hypotheses

✓ Inference
✓ How we use Hypothesis Testing

➤ Estimation
- Distributions
- Hypothesis testing
- Sides and Tails
Estimation: From the Sample

• Point estimation
 ▪ Mean
 ▪ Median
 ▪ Change in mean/median

• Interval estimation
 ▪ Variation (e.g. range, σ^2, σ, σ/\sqrt{n})
 ▪ 95% Confidence interval
Pictures, Not Numbers

- Scatter plots
- Bar plots (use a table)
- Histograms
- Box plots

- *Not Estimation*
 - See the data and check assumptions
Graphs and Tables

• A picture is worth a thousand t-tests
• Vertical (Y) axis can be misleading
Like the Washington Post
Weather, Though

Temperature trend

Actual and forecast
Normal
Record

PAST TEN DAYS
TEN-DAY FORECAST
Estimation and Hypotheses

✓ Inference
✓ How we use Hypothesis Testing
✓ Estimation

➢ *Distributions*
 • Hypothesis testing
 • Sides and Tails
Distributions

• Parametric tests are based on distributions
 ▪ Normal Distribution (standard normal, bell curve, Z distribution)
• Non-parametric tests still have assumptions, but not based on distributions
2 of the Continuous Distributions

• Normal distribution: $N(\mu, \sigma^2)$
 - $\mu = \text{mean, } \sigma^2 = \text{variance}$
 - Z or standard normal = $N(0,1)$

• t distribution: t_ω
 - $\omega = \text{degrees of freedom (df)}$
 - Usually a function of sample size
 - Mean = \bar{X} (sample mean)
 - Variance = s^2 (sample variance)
Binary Distribution

• Binomial distribution: $B(n, p)$
 ▪ Sample size = n
 ▪ Proportion ‘yes’ = p
 ▪ Mean = np
 ▪ Variance = $np(1-p)$

• Can do exact or use Normal
Many More Distributions

- Not going to cover
- Poisson
- Log normal
- Gamma
- Beta
- Weibull
- Many more
Estimation and Hypotheses

✓ Inference
✓ How we use Hypothesis Testing
✓ Estimation
✓ Distributions

➤ Hypothesis Testing
➤ Sides and Tails
Hypothesis Testing

• Null hypothesis \((H_0)\)
• Alternative hypothesis \((H_1 \text{ or } H_a)\)
Null Hypothesis

• For superiority studies we think for example
 ▪ Average systolic blood pressure (SBP) on Drug A is different than average SBP on Drug B
• Null of that? Usually that there is no effect
 ▪ Mean = 0
 ▪ OR = 1
 ▪ RR = 1
 ▪ Correlation Coefficient = 0
• Sometimes compare to a fixed value so Null
 ▪ Mean = 120
• If an equivalence trial, look at NEJM paper or other specific resources
Alternative Hypothesis

- Contradicts the null
- There is an effect
- What you want to prove
- If equivalence trial, special way to do this
Example Hypotheses

• \(H_0: \mu_1 = \mu_2 \)
• \(H_A: \mu_1 \neq \mu_2 \)
 - Two-sided test
• \(H_A: \mu_1 > \mu_2 \)
 - One-sided test
1 vs. 2 Sided Tests

- **Two-sided test**
 - No *a priori* reason 1 group should have stronger effect
 - Used for most tests

- **One-sided test**
 - Specific interest in only one direction
 - Not scientifically relevant/interesting if reverse situation true
Use a 2-Sided Test

• Almost always

• If you use a one-sided test
 ▪ Explain yourself
 ▪ Penalize yourself on the alpha
 ▪ 0.05 2-sided test becomes a 0.025 1-sided test
Never “Accept” Anything

- Reject the null hypothesis
- Fail to reject the null hypothesis

- Failing to reject the null hypothesis does NOT mean the null (H_0) is true
- Failing to reject the null means
 - Not enough evidence in your sample to reject the null hypothesis
 - In one sample saw what you saw
Outline

✔ Estimation and Hypotheses

➢ How to Test Hypotheses
 • Confidence Intervals
 • Regression
 • Error
 • Diagnostic Testing
 • Misconceptions
Experiment

- Develop hypotheses
- Collect sample/Conduct experiment
 - Calculate test statistic
 - Compare test statistic with what is expected when H_0 is true
Information at Hand

- 1 or 2 sample test?
- Outcome variable
 - Binary, Categorical, Ordered, Continuous, Survival
- Population
- Numbers (e.g. mean, standard deviation)
Example:
Hypertension/Cholesterol

- Mean cholesterol hypertensive men
- Mean cholesterol in male general (normotensive) population (20-74 years old)
- In the 20-74 year old male population the mean serum cholesterol is 211 mg/ml with a standard deviation of 46 mg/ml
One Sample: Cholesterol Sample Data

• Have data on 25 hypertensive men
• Mean serum cholesterol level is 220 mg/ml ($\bar{X} = 220$ mg/ml)
 ▪ Point estimate of the mean
• Sample standard deviation: $s = 38.6$ mg/ml
 ▪ Point estimate of the variance $= s^2$
Compare Sample to Population

• Is 25 enough?
 ▪ Next lecture we will discuss
• What difference in cholesterol is clinically or biologically meaningful?
• Have an available sample and want to know if hypertensives are different than general population
Situation

• May be you are reading another person’s work
• May be already collected data

• If you were designing up front you would calculate the sample size
 ▪ But for now, we have 25 people
Cholesterol Hypotheses

• H_0: $\mu_1 = \mu_2$
• H_0: $\mu = 211$ mg/ml
 - $\mu =$ POPULATION mean serum cholesterol for male hypertensives
 - Mean cholesterol for hypertensive men = mean for general male population
• H_A: $\mu_1 \neq \mu_2$
• H_A: $\mu \neq 211$ mg/ml
Cholesterol Sample Data

- Population information (general)
 - $\mu = 211 \text{ mg/ml}$
 - $\sigma = 46 \text{ mg/ml} \ (\sigma^2 = 2116)$

- Sample information (hypertensives)
 - $\bar{X} = 220 \text{ mg/ml}$
 - $s = 38.6 \text{ mg/ml} \ (s^2 = 1489.96)$
 - $N = 25$
Experiment

✓ Develop hypotheses
✓ Collect sample/Conduct experiment

➢ *Calculate test statistic*

• Compare test statistic with what is expected when H_0 is true
Test Statistic

- Basic test statistic for a mean

\[
\text{test statistic} = \frac{\text{point estimate of } \mu - \text{target value of } \mu}{\sigma_{\text{point estimate of } \mu}}
\]

- \(\sigma = \text{standard deviation} \) (sometimes use \(\sigma/\sqrt{n}\))

- For 2-sided test: Reject \(H_0\) when the test statistic is in the upper or lower 100*\(\alpha/2\)% of the reference distribution

- What is \(\alpha\)?
Vocabulary

• Types of errors
 ▪ Type I (α) (false positives)
 ▪ Type II (β) (false negatives)

• Related words
 ▪ Significance Level: α level
 ▪ Power: 1- β
Unknown Truth and the Data

<table>
<thead>
<tr>
<th>Data</th>
<th>Truth</th>
<th>H_0 Correct</th>
<th>H_A Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decide H_0</td>
<td>1 - α</td>
<td>β</td>
<td></td>
</tr>
<tr>
<td>“fail to reject H_0”</td>
<td>True Negative</td>
<td>False Negative</td>
<td></td>
</tr>
<tr>
<td>Decide H_A</td>
<td>α</td>
<td>1 - β</td>
<td></td>
</tr>
<tr>
<td>“reject H_0”</td>
<td>False Positive</td>
<td>True Positive</td>
<td></td>
</tr>
</tbody>
</table>

$\alpha = \text{significance level}$
1 - $\beta = \text{power}$
Type I Error

• $\alpha = P(\text{reject } H_0 \mid H_0 \text{ true})$
• Probability reject the null hypothesis given the null is true
• False positive
• Probability reject that hypertensives’ $\mu=211\text{mg/ml}$ when in truth the mean cholesterol for hypertensives is 211
Type II Error (or, 1- Power)

• $\beta = P(\text{do not reject } H_0 \mid H_1 \text{ true})$
• False Negative
• Probability we NOT reject that male hypertensives’ cholesterol is that of the general population when in truth the mean cholesterol for hypertensives is different than the general male population
Power

- Power = 1-β = P(reject $H_0 \mid H_1$ true)
- Everyone wants high power, and therefore low Type II error
Cholesterol Sample Data

- $N = 25$
- $X = 220 \text{ mg/ml}$
- $\mu = 211 \text{ mg/ml}$
- $s = 38.6 \text{ mg/ml} \ (s^2 = 1489.96)$
- $\sigma = 46 \text{ mg/ml} \ (\sigma^2 = 2116)$
- $\alpha = 0.05$
- Power? Next lecture!
Z Test Statistic and $N(0,1)$

- Want to test continuous outcome
- Known variance
- Under H_0, $\dfrac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1)$

- Therefore,

Reject H_0 if $\left| \dfrac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \right| > 1.96$ (gives a 2-sided $\alpha=0.05$ test)

Reject H_0 if $\bar{X} > \mu_0 + 1.96 \dfrac{\sigma}{\sqrt{n}}$ or $\bar{X} < \mu_0 - 1.96 \dfrac{\sigma}{\sqrt{n}}$
Experiment

✓ Develop hypotheses
✓ Collect sample/Conduct experiment
✓ Calculate test statistic

- Compare test statistic with what is expected when H_0 is true
 - Reference distribution
 - Assumptions about distribution of outcome variable
Z or Standard Normal Distribution

- 68% of area
- 95% of area
- 99% of area
Z or Standard Normal Distribution
Z or Standard Normal Distribution

- 68% of area
- 95% of area
- 99% of area
How to test?

- Rejection interval
 - Like a confidence interval but centered on the null mean
- Z test or Critical Value
 - $N(0,1)$ distribution and alpha
- t test or Critical Value
 - t distribution and alpha
- P-value
- Confidence interval
General Formula \((1-\alpha)\%\)
Rejection Region for Mean Point Estimate

\[
\left(\mu - \frac{Z_{1-\alpha/2}\sigma}{\sqrt{n}}, \mu + \frac{Z_{1-\alpha/2}\sigma}{\sqrt{n}} \right)
\]

- Note that \(+Z_{(\alpha/2)} = - Z_{(1-\alpha/2)}\)
- 90% CI : \(Z = 1.645\)
- 95% CI : \(Z = 1.96\)
- 99% CI : \(Z = 2.58\)
Cholesterol Rejection Interval Using H_0 Population Information

Reject H_0 if 220 is outside of $(193, 229)$

$N(211, 46^2)$
Cholesterol Rejection Interval
Using H_0 Sample Information

t (df=24, 211, 38.6^2)

Reject H_0 if 220 is outside of (195, 227)

t Distribution (df = 24)
Side Note on t vs. Z

- If $s = \sigma$ then the t value will be larger than the Z value.
- BUT, here our sample standard deviation (38.6) was quite a bit smaller than the population sd (46).
 - HERE intervals using t look smaller than Z intervals BUT
 - Because of sd, not distribution.
How to test?

✓ Rejection interval
 ▪ Like a confidence interval but centered on the null mean

➢ Z test or Critical Value
 ▪ N(0,1) distribution and alpha

➢ t test or Critical Value
 ▪ t distribution and alpha

• P-value
• Confidence interval
Z-test: Do Not Reject H_0

$$|Z| = \left| \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \right| = \left| \frac{220 - 211}{46 / \sqrt{25}} \right| = 0.98 < 1.96$$
Z or Standard Normal Distribution
Determining Statistical Significance: Critical Value Method

- Compute the test statistic $Z (0.98)$
- Compare to the critical value
 - Standard Normal value at α-level (1.96)
- If $|\text{test statistic}| > \text{critical value}$
 - Reject H_0
 - Results are *statistically significant*
- If $|\text{test statistic}| < \text{critical value}$
 - Do not reject H_0
 - Results are *not statistically significant*
T-Test Statistic

• Want to test continuous outcome

• *Unknown* variance (s, not σ)

• Under H_0

\[
\frac{\bar{X} - \mu_0}{s / \sqrt{n}} \sim t_{(n-1)}
\]

• Critical values: statistics books or computer

• t-distribution approximately normal for degrees of freedom (df) >30
Cholesterol: t-statistic

• Using data

\[
T = \frac{\bar{X} - \mu_0}{s / \sqrt{n}} = \frac{220 - 211}{38.6 / \sqrt{25}} = 1.17
\]

• For \(\alpha = 0.05 \), two-sided test from \(t(24) \) distribution the critical value = 2.064

• \(| T | = 1.17 < 2.064 \)

• The difference is not statistically significant at the \(\alpha = 0.05 \) level

• Fail to reject \(H_0 \)
Almost all ‘Critical Value’ Tests: Exact Same Idea

- Paired tests
- 2-sample tests
- Continuous data
- Binary data

- See appendix at end of slides
How to test?

✓ Rejection interval
 ▪ Like a confidence interval but centered on the null mean
✓ Z test or Critical Value
 ▪ $N(0,1)$ distribution and alpha
✓ t test or Critical Value
 ▪ t distribution and alpha
➢ P-value
 • Confidence interval
P-value

• Smallest α the observed sample would reject H_0

• Given H_0 is true, probability of obtaining a result as extreme or more extreme than the actual sample

• MUST be based on a model
 - Normal, t, binomial, etc.
Cholesterol Example

• P-value for two sided test
 \(\bar{X} = 220 \text{ mg/ml}, \sigma = 46 \text{ mg/ml} \)
• n = 25
• \(H_0: \mu = 211 \text{ mg/ml} \)
• \(H_A: \mu \neq 211 \text{ mg/ml} \)

\[
2 \cdot P[\bar{X} > 220] = 0.33
\]
Determining Statistical Significance: P-Value Method

- Compute the exact p-value (0.33)
- Compare to the predetermined α-level (0.05)
- If p-value < predetermined α-level
 - Reject \(H_0 \)
 - Results are *statistically significant*
- If p-value > predetermined α-level
 - Do not reject \(H_0 \)
 - Results are *not statistically significant*
P-value Interpretation Reminders

• Measure of the strength of evidence in the data that the null is not true

• A random variable whose value lies between 0 and 1

• NOT the probability that the null hypothesis is true.
How to test?

- Rejection interval
 - Like a confidence interval but centered on the null mean
- Z test or Critical Value
 - $N(0,1)$ distribution and alpha
- t test or Critical Value
 - t distribution and alpha
- P-value
 - Confidence interval
Outline

✓ Estimation and Hypotheses
✓ How to Test Hypotheses

➢ Confidence Intervals
 • Regression
 • Error
 • Diagnostic Testing
 • Misconceptions
General Formula (1-α)% CI for μ

$$\left(\bar{X} - \frac{Z_{1-\alpha/2} \sigma}{\sqrt{n}}, \bar{X} + \frac{Z_{1-\alpha/2} \sigma}{\sqrt{n}} \right)$$

- Construct an interval around the point estimate
- Look to see if the population/null mean is inside
Cholesterol Confidence Interval Using Population Variance (Z)

\[N(220, 46^2) \]
CI for the Mean, Unknown Variance

- Pretty common
- Uses the t distribution
- Degrees of freedom

\[
\left(\bar{X} - \frac{t_{n-1,1-\alpha/2} s}{\sqrt{n}}, \bar{X} + \frac{t_{n-1,1-\alpha/2} s}{\sqrt{n}} \right)
\]

\[
= \left(220 - \frac{2.064 \times 38.6}{\sqrt{25}}, 220 + \frac{2.064 \times 38.6}{\sqrt{25}} \right)
\]

\[
= (204.06, 235.93)
\]
Cholesterol Confidence Interval Using Sample Data (t)

t (df=24, 220, 38.6²)
But I Have All Zeros!
Calculate 95% upper bound

- Known # of trials without an event (2.11 van Belle 2002, Louis 1981)
- Given no observed events in n trials, 95% upper bound on rate of occurrence is $3 / (n + 1)$
 - No fatal outcomes in 20 operations
 - 95% upper bound on rate of occurrence $= 3 / (20 + 1) = 0.143$, so the rate of occurrence of fatalities could be as high as 14.3%
Hypothesis Testing and Confidence Intervals

- Hypothesis testing focuses on where the sample mean is located.
- Confidence intervals focus on plausible values for the population mean.
- In general, the best way to estimate a confidence interval is to bootstrap (details: see a statistician).
CI Interpretation

• Cannot determine if a particular interval does/does not contain true mean

• Can say in the long run
 ▪ Take many samples
 ▪ Same sample size
 ▪ From the same population
 ▪ 95% of similarly constructed confidence intervals will contain true mean

• Think about meta analyses
Interpret a 95% Confidence Interval (CI) for the population mean, \(\mu \)

- “If we were to find many such intervals, each from a different random sample but in exactly the same fashion, then, in the long run, about 95% of our intervals would include the population mean, \(\mu \), and 5% would not.”
Do NOT interpret a 95% CI…

• “There is a 95% probability that the true mean lies between the two confidence values we obtained from a particular sample”

• “We can say that we are 95% confident that the true mean does lie between these two values.”

• Overlapping CIs do NOT imply non-significance
Take Home: Hypothesis Testing

- Many ways to test
 - Rejection interval
 - Z test, t test, or Critical Value
 - P-value
 - Confidence interval
- For this, all ways will agree
 - If not: math wrong, rounding errors
- Make sure interpret correctly
Take Home Hypothesis Testing

- How to turn questions into hypotheses
- Failing to reject the null hypothesis DOES NOT mean that the null is true
- Every test has assumptions
 - A statistician can check all the assumptions
 - If the data does not meet the assumptions there are non-parametric versions of tests (see text)
Take Home: CI

• Meaning/interpretation of the CI
• How to compute a CI for the true mean when variance is known (normal model)
• How to compute a CI for the true mean when the variance is NOT known (t distribution)
• In practice use Bootstrap
Take Home: Vocabulary

• Null Hypothesis: \(H_0 \)
• Alternative Hypothesis: \(H_1 \) or \(H_a \) or \(H_A \)
• Significance Level: \(\alpha \) level
• Acceptance/Rejection Region
• Statistically Significant
• Test Statistic
• Critical Value
• P-value, Confidence Interval
Outline

✓ Estimation and Hypotheses
✓ How to Test Hypotheses
✓ Confidence Intervals

Regression
• Error
• Diagnostic Testing
• Misconceptions
Regression

- Continuous outcome
 - Linear
- Binary outcome
 - Logistic
- Many other types
Linear regression

• Model for simple linear regression
 - $Y_i = \beta_0 + \beta_1 x_{1i} + \varepsilon_i$
 - $\beta_0 =$ intercept
 - $\beta_1 =$ slope

• Assumptions
 - Observations are independent
 - Normally distributed with constant variance

• Hypothesis testing
 - $H_0: \beta_1 = 0$ vs. $H_A: \beta_1 \neq 0$
In Order of Importance

1. Independence
2. Equal variance
3. Normality

(for ANOVA and linear regression)
More Than One Covariate

- \(Y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{3i} + \varepsilon_i \)
- \(SBP = \beta_0 + \beta_1 Drug + \beta_2 Male + \beta_3 Age \)
- \(\beta_1 \)
 - Association between Drug and SBP
 - Average difference in SBP between the Drug and Control groups, given sex and age
Testing?

• Each β has a p-value associated with it
• Each model will have an F-test
• Other methods to determine fit
 ▪ Residuals

• See a statistician and/or take a biostatistics class. Or 3.
Repeated Measures
(3 or more time points)

• Do NOT use repeated measures
 AN(C)OVA
 ▪ Assumptions quite stringent
• Talk to a statistician
 ▪ Mixed model
 ▪ Generalized estimating equations
 ▪ Other
An Aside: Correlation

• Range: -1 to 1
• Test is correlation is $\neq 0$
• With $N=1000$, easy to have highly significant ($p<0.001$) correlation $= 0.05$
 ▪ Statistically significant that is
 ▪ No where CLOSE to meaningfully different from 0
• Partial Correlation Coefficient
Do Not Use Correlation. Use Regression

- Some fields: Correlation still popular
 - Partial regression coefficients
- High correlation is > 0.8 (in absolute value). Maybe 0.7
- Never believe a p-value from a correlation test
- Regression coefficients are more meaningful
Analysis Follows Design

Questions → Hypotheses → Experimental Design → Samples → Data → Analyses → Conclusions
Outline

✓ Estimation and Hypotheses
✓ How to Test Hypotheses
✓ Confidence Intervals
✓ Regression

➢ Error

• Diagnostic Testing
• Misconceptions
Is α or β more important?

- Depends on the question
- Most will say protect against Type I error
 - Multiple comparisons
- Need to think about individual and population health implications and costs
Omics

- False negative (Type II error)
 - Miss what could be important
 - Are these samples going to be looked at again?
- False positive (Type I error)
 - Waste resources following dead ends
HIV Screening

- False positive
 - Needless worry
 - Stigma
- False negative
 - Thinks everything is ok
 - Continues to spread disease
- For cholesterol example?
What do you need to think about?

• Is it worse to treat those who truly are not ill or to not treat those who are ill?

• That answer will help guide you as to what amount of error you are willing to tolerate in your trial design
Outline

✓ Estimation and Hypotheses
✓ How to Test Hypotheses
✓ Confidence Intervals
✓ Regression
✓ Error

➢ Diagnostic Testing
• Misconceptions
Little Diagnostic Testing

Lingo

• False Positive/False Negative (α, β)
• Positive Predictive Value (PPV)
 ▪ Probability diseased given POSITIVE test result
• Negative Predictive Value (NPV)
 ▪ Probability NOT diseased given NEGATIVE test result
• Predictive values depend on disease prevalence
Sensitivity, Specificity

- **Sensitivity**: how good is a test at correctly identifying people who have disease
 - Can be 100% if you say everyone is ill (all have positive result)
 - Useless test with bad Specificity

- **Specificity**: how good is the test at correctly identifying people who are well
Example: Western vs. ELISA

- 1 million people
- ELISA Sensitivity = 99.9%
- ELISA Specificity = 99.9%
- 1% prevalence of infection
 - 10,000 positive by Western (gold standard)
 - 9990 true positives (TP) by ELISA
 - 10 false negatives (FN) by ELISA
1% Prevalence

- 990,000 not infected
 - 989,010 True Negatives (TN)
 - 990 False Positives (FP)
- Without confirmatory test
 - Tell 990 or ~0.1% of the population they are infected when in reality they are not
 - PPV = 91%, NPV = 99.999%
1% Prevalence

- 10980 total test positive by ELISA
 - 9990 true positive
 - 990 false positive
- $9990/10980 = \text{probability diseased GIVEN positive by ELISA} = \text{PPV} = 0.91 = 91$
- 989,020 total test negatives by ELISA
 - 989,010 true negatives
 - 10 false negatives
- $989010/989020 = \text{NPV} = 99.999\%$
0.1% Prevalence

- 1,000 infected – ELISA picks up 999
 - 1 FN
- 999,000 not infected
 - 989,001 True Negatives (TN)
 - 999 False Positives (FP)
- Positive predictive value = 50%
- Negative predictive value = 99.999%
10% Prevalence

- 99% PPV
- 99.99% NPV
Prevalence Matters
(Population You Sample to Estimate Prevalence, too)

- Numbers look “good” with high prevalence
 - Testing at STD clinic in high risk populations
- Low prevalence means even very high sensitivity and specificity will result in middling PPV
- Calculate PPV and NPV for 0.01% prevalence found in female blood donors
Prevalence Matters

• PPV and NPV tend to come from good cohort data

• Can estimate PPV/NPV from case control studies but the formulas are hard and you need to be REALLY sure about the prevalence
 ▪ Triple sure
High OR
Does Not a Good Test Make

• Diagnostic tests need separation
• ROC curves
 ▪ Not logistic regression with high OR
• Strong *association* between 2 variables does NOT mean good *prediction of separation*
What do you need to think about?

• How good does the test need to be?
 - 96% sensitivity and 10% specificity?
 - 66% AUC? (What is that?)

• Guide you as to what amount of differentiation, levels of sensitivity, specificity, PPV and NPV you are willing to tolerate in your trial design
Outline

✓ Estimation and Hypotheses
✓ How to Test Hypotheses
✓ Confidence Intervals
✓ Regression
✓ Error
✓ Diagnostic Testing

➤ Mistakes & Misconceptions
Avoid Common Mistakes: Hypothesis Testing

• Mistake: Have paired data and do not do a paired test OR do not have paired data and do a paired test

• If you have paired data, use a paired test
 ▪ If you don’t then you can lose power

• If you do NOT have paired data, do NOT use a paired test
 ▪ You can have the wrong inference
Avoid Common Mistakes: Hypothesis Testing

• Mistake: assume independent measurements
• Tests have assumptions of independence
 ▪ Taking multiple samples per subject? Statistician MUST know
 ▪ Different statistical analyses MUST be used and they can be difficult!
• Mistake: ignore distribution of observations
 ▪ Histogram of the observations
 ▪ Highly skewed data - t test and even non-parametric tests can have incorrect results
Avoid Common Mistakes: Hypothesis Testing

- **Mistake: Assume equal variances (and the variances are not equal)**
 - Did not show variance test
 - Not that good of a test
 - ALWAYS graph your data first to assess symmetry and variance

- **Mistake: Not talking to a statistician**
Estimates and P-Values

- Study 1: 25±9
 - Stat sig at the 1% level
- Study 2: 10±9
 - Not statistically significant (ns)
- 25 vs. 10 wow a big difference between these studies!
 - Um, no. 15±12.7
Comparing A to B

• Appropriate
 ▪ Statistical properties of A-B
 ▪ Statistical properties of A/B

• NOT Appropriate
 ▪ Statistical properties of A
 ▪ Statistical properties of B
 ▪ Look they are different!
Not a big difference? 15?!?

- Distribution of the difference
 - 15±12.7
 - Not statistically significant
 - Standard deviations! Important.
- Study 3 has much larger sample size!
 - 2.5±0.9
3 Studies. 3 Answers, Maybe

- Study #3 is statistically significant
- Difference between study 3 and the other studies
 - Statistical
 - Different magnitudes
- Does study 3 replicate study 1?
- Is it all sample size?
(Mis)conceptions

• P-value = inferential tool? Yes
 ▪ Helps demonstrate that population means in two groups are not equal
• Smaller p-value \rightarrow larger effect? No
 ▪ Effect size is determined by the difference in the sample mean or proportion between 2 groups
(Mis)conceptions

• A small p-value means the difference is statistically significant, not that the difference is clinically significant. YES
 ▪ A large sample size can help get a small p-value. YES, so do not be tricked.

• Failing to reject H₀ means what?
 ▪ There is not enough evidence to reject H₀
 YES
 ▪ H₀ is true! NO NO NO NO NO NO NO!
Analysis Follows Design

Questions → Hypotheses → Experimental Design → Samples → Data → Analyses → Conclusions
Questions?
Appendix

- Formulas for Critical Values
- Layouts for how to choose a test
Do Not Reject H_0

$$|Z| = \left| \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \right| = \left| \frac{220 - 211}{46 / \sqrt{25}} \right| = 0.98 < 1.96$$

$$220 = \bar{X} > \mu_0 + 1.96 \frac{\sigma}{\sqrt{n}} = 211 + 1.96 \frac{46}{\sqrt{25}} = 228.03 \text{ NO!}$$

$$220 = \bar{X} < \mu_0 - 1.96 \frac{\sigma}{\sqrt{n}} = 211 - 1.96 \frac{46}{\sqrt{25}} = 192.97 \text{ NO!}$$
Paired Tests: Difference Two Continuous Outcomes

• Exact same idea
• Known variance: Z test statistic
• Unknown variance: t test statistic
• $H_0: \mu_d = 0$ vs. $H_A: \mu_d \neq 0$
• Paired Z-test or Paired t-test

$$Z = \frac{\bar{d}}{\sigma / \sqrt{n}} \quad \text{or} \quad T = \frac{\bar{d}}{s / \sqrt{n}}$$
2 Samples: Same Variance
+ Sample Size Calculation Basis

- **Unpaired - Same idea as paired**
- **Known variance:** Z test statistic
- **Unknown variance:** t test statistic
- **H₀:** \(\mu_1 = \mu_2 \) vs. **Hₐ:** \(\mu_1 \neq \mu_2 \)
 - **H₀:** \(\mu_1 - \mu_2 = 0 \) vs. **Hₐ:** \(\mu_1 - \mu_2 \neq 0 \)
- **Assume common variance**

\[
Z = \frac{\bar{x} - \bar{y}}{\sigma \sqrt{\frac{1}{n} + \frac{1}{m}}}
\quad or \quad
T = \frac{\bar{x} - \bar{y}}{s \sqrt{\frac{1}{n} + \frac{1}{m}}}
\]
2 Sample Unpaired Tests: 2 Different Variances

- Same idea
- Known variance: Z test statistic
- Unknown variance: t test statistic
- $H_0: \mu_1 = \mu_2$ vs. $H_A: \mu_1 \neq \mu_2$
- $H_0: \mu_1 - \mu_2 = 0$ vs. $H_A: \mu_1 - \mu_2 \neq 0$

\[
Z = \frac{\bar{x} - \bar{y}}{\sqrt{\sigma_1^2/n + \sigma_2^2/m}} \quad \text{or} \quad T = \frac{\bar{x} - \bar{y}}{\sqrt{s_1^2/n + s_2^2/m}}
\]
One Sample Binary Outcomes

• Exact same idea
• For large samples
 ▪ Use Z test statistic
 ▪ Set up in terms of proportions, not means

\[
Z = \frac{\hat{p} - p_0}{\sqrt{p_0(1-p_0)/n}}
\]
Two Population Proportions

- Exact same idea
- For large samples use Z test statistic

\[
Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n} + \frac{\hat{p}_2(1-\hat{p}_2)}{m}}}
\]
Normal/Large Sample Data?

- Yes
 - Inference on means?
 - Yes
 - Independent?
 - Yes
 - Variance known?
 - Yes
 - T test w/ pooled variance
 - No
 - Z test
 - No
 - Paired t
 - No
 - Inference on variance?
 - Yes
 - F test for variances
 - No
 - T test w/ unequal variance

- No
 - Variances equal?
 - Yes
 - T test w/ pooled variance
 - No
 - T test w/ unequal variance