Principles of Hypothesis Testing for Public Health

Laura Lee Johnson, Ph.D.
Statistician
National Center for Complementary and Alternative Medicine
johnslau@mail.nih.gov
Fall 2009

Answers to Questions I Usually Get Around Now

• ITT is like generalizing to real life
• I am not a fan of stratification
 • Except by clinic/site
 • Not everyone agrees with me
• OK to adjust for (some) variables
 • Baseline covariates
 • Cannot stratify a continuous variable
 • At least rarely can you do it well
 • Some variables are not ok, or you just upgraded to a fancy model!

Objectives

• Formulate questions for statisticians and epidemiologists using
 • P-value
 • Power
 • Type I and Type II errors
• Identity a few commonly used statistical tests for comparing two groups
Outline

- Estimation and Hypotheses
 - How to Test Hypotheses
 - Confidence Intervals
 - Regression
 - Error
 - Diagnostic Testing
 - Misconceptions
 - Appendix

Estimation and Hypotheses

- Inference
- How we use Hypothesis Testing
 - Estimation
 - Distributions
 - Hypothesis testing
 - Sides and Tails

Statistical Inference

- Inferences about a population are made on the basis of results obtained from a sample drawn from that population
- Want to talk about the larger population from which the subjects are drawn, not the particular subjects!
You Use Hypothesis Testing

- Designing your study
- Reviewing the design of other studies
 - Grant or application review (e.g. NIH study section, IRB)
- Interpreting your study results
- Interpreting other’s study results
 - Reviewing a manuscript or journal
 - Interpreting the news

I Use Hypothesis Testing

- Do all you do
- Analyze the data to find the results
 - Program formulas not presented here in detail
- You can analyze the data, too, but be careful

Analysis Follows Design

Questions → Hypotheses →
Experimental Design → Samples →
Data → Analyses → Conclusions
What Do We Test

- Effect or Difference we are interested in
 - Difference in Means or Proportions
 - Odds Ratio (OR)
 - Relative Risk (RR)
 - Correlation Coefficient
- Clinically important difference
 - Smallest difference considered biologically or clinically relevant
- Medicine: usually 2 group comparison of population means

Estimation and Hypotheses

✓ Inference
✓ How we use Hypothesis Testing

- Estimation
 - Distributions
 - Hypothesis testing
 - Sides and Tails

Estimation: From the Sample

- Point estimation
 - Mean
 - Median
 - Change in mean/median
- Interval estimation
 - Variation (e.g. range, σ^2, σ, σ/\sqrt{n})
 - 95% Confidence interval
Pictures, Not Numbers

- Scatter plots
- Bar plots (use a table)
- Histograms
- Box plots

- Not Estimation
 - See the data and check assumptions

Graphs and Tables

- A picture is worth a thousand t-tests
- Vertical (Y) axis can be misleading

Like the Washington Post
Weather, Though
Estimation and Hypotheses

✓ Inference
✓ How we use Hypothesis Testing
✓ Estimation
➢ Distributions
 • Hypothesis testing
 • Sides and Tails

Distributions

• Parametric tests are based on distributions
 ▪ Normal Distribution (standard normal, bell curve, Z distribution)
• Non-parametric tests still have assumptions, but not based on distributions

2 of the Continuous Distributions

• Normal distribution: \(N(\mu, \sigma^2) \)
 ▪ \(\mu \) = mean, \(\sigma^2 \) = variance
 ▪ Z or standard normal = \(N(0,1) \)
• t distribution: \(t_n \)
 ▪ \(n_0 \) = degrees of freedom (df)
 ▪ Usually a function of sample size
 ▪ Mean = \(\bar{X} \) (sample mean)
 ▪ Variance = \(s^2 \) (sample variance)
Binary Distribution

- Binomial distribution: \(B(n, p) \)
 - Sample size = \(n \)
 - Proportion ‘yes’ = \(p \)
 - Mean = \(np \)
 - Variance = \(np(1-p) \)
- Can do exact or use Normal

Many More Distributions

- Not going to cover
- Poisson
- Log normal
- Gamma
- Beta
- Weibull
- Many more

Estimation and Hypotheses

- Inference
- How we use Hypothesis Testing
- Estimation
- Distributions
 - Hypothesis Testing
 - Sides and Tails
Hypothesis Testing

- Null hypothesis (H₀)
- Alternative hypothesis (H₁ or H₂)

Null Hypothesis

- For superiority studies we think for example
 - Average systolic blood pressure (SBP) on Drug A is different than average SBP on Drug B
- Null of that? Usually that there is no effect
 - Mean = 0
 - OR = 1
 - RR = 1
 - Correlation Coefficient = 0
- Sometimes compare to a fixed value so Null
 - Mean = 120
- If an equivalence trial, look at NEJM paper or other specific resources

Alternative Hypothesis

- Contradicts the null
- There is an effect
- What you want to prove
- If equivalence trial, special way to do this
Example Hypotheses

- $H_0: \mu_1 = \mu_2$
- $H_A: \mu_1 \neq \mu_2$
 - Two-sided test
- $H_A: \mu_1 > \mu_2$
 - One-sided test

1 vs. 2 Sided Tests

- Two-sided test
 - *No a priori* reason 1 group should have stronger effect
 - Used for most tests
- One-sided test
 - Specific interest in only one direction
 - Not scientifically relevant/interesting if reverse situation true

Use a 2-Sided Test

- Almost always
- If you use a one-sided test
 - Explain yourself
 - Penalize yourself on the alpha
 - 0.05 2-sided test becomes a 0.025 1-sided test
Never “Accept” Anything

- Reject the null hypothesis
- Fail to reject the null hypothesis
- Failing to reject the null hypothesis does NOT mean the null (H₀) is true
- Failing to reject the null means
 - Not enough evidence in your sample to reject the null hypothesis
 - In one sample saw what you saw

Outline

- Estimation and Hypotheses
 - How to Test Hypotheses
 - Confidence Intervals
 - Regression
 - Error
 - Diagnostic Testing
 - Misconceptions

Experiment

- Develop hypotheses
- Collect sample/Conduct experiment
- Calculate test statistic
- Compare test statistic with what is expected when H₀ is true
Information at Hand

• 1 or 2 sample test?
• Outcome variable
 ▪ Binary, Categorical, Ordered, Continuous, Survival
• Population
• Numbers (e.g. mean, standard deviation)

Example: Hypertension/Cholesterol

• Mean cholesterol hypertensive men
• Mean cholesterol in male general (normotensive) population (20-74 years old)
• In the 20-74 year old male population the mean serum cholesterol is 211 mg/ml with a standard deviation of 46 mg/ml

One Sample: Cholesterol Sample Data

• Have data on 25 hypertensive men
• Mean serum cholesterol level is 220mg/ml (̄x = 220 mg/ml)
 ▪ Point estimate of the mean
• Sample standard deviation: s = 38.6 mg/ml
 ▪ Point estimate of the variance = s²
Compare Sample to Population

• Is 25 enough?
 ▪ Next lecture we will discuss
• What difference in cholesterol is clinically or biologically meaningful?
• Have an available sample and want to know if hypertensives are different than general population

Situation

• May be you are reading another person’s work
• May be already collected data

• If you were designing up front you would calculate the sample size
 ▪ But for now, we have 25 people

Cholesterol Hypotheses

• $H_0: \mu_1 = \mu_2$
• $H_0: \mu = 211 \text{ mg/ml}$
 ▪ $\mu =$ POPULATION mean serum cholesterol for male hypertensives
 ▪ Mean cholesterol for hypertensive men = mean for general male population
• $H_A: \mu_1 \neq \mu_2$
• $H_A: \mu \neq 211 \text{ mg/ml}$
Cholesterol Sample Data

• Population information (general)
 ▪ $\mu = 211$ mg/ml
 ▪ $\sigma = 46$ mg/ml ($\sigma^2 = 2116$)

• Sample information (hypertensives)
 ▪ $\bar{X} = 220$ mg/ml
 ▪ $s = 38.6$ mg/ml ($s^2 = 1489.96$)
 ▪ $N = 25$

Experiment

✓ Develop hypotheses
✓ Collect sample/Conduct experiment
➢ Calculate test statistic
 • Compare test statistic with what is expected when H_0 is true

Test Statistic

• Basic test statistic for a mean
$$\text{test statistic} = \frac{\text{point estimate of } \mu - \text{target value of } \mu}{\sigma \text{ point estimate of } \mu}$$

• $\sigma = \text{standard deviation (sometimes use } \sigma/\sqrt{n})$
• For 2-sided test: Reject H_0 when the test statistic is in the upper or lower $100\% \alpha/2\%$ of the reference distribution
• What is α?
Vocabulary

- Types of errors
 - Type I (α) (false positives)
 - Type II (β) (false negatives)
- Related words
 - Significance Level: α level
 - Power: $1-\beta$

Unknown Truth and the Data

<table>
<thead>
<tr>
<th>Truth Data</th>
<th>H_0 Correct</th>
<th>H_A Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decide H_0 “fail to reject H_0”</td>
<td>$1-\alpha$ True Negative</td>
<td>β False Negative</td>
</tr>
<tr>
<td>Decide H_A “reject H_0”</td>
<td>α False Positive</td>
<td>$1-\beta$ True Positive</td>
</tr>
</tbody>
</table>

$\alpha = \text{significance level}$

$1-\beta = \text{power}$

Type I Error

- $\alpha = P(\text{reject } H_0 | H_0 \text{ true})$
- Probability reject the null hypothesis given the null is true
- False positive
- Probability reject that hypertensives’ $\mu=211 \text{mg/ml}$ when in truth the mean cholesterol for hypertensives is 211
Type II Error (or, 1-Power)

- $\beta = P(\text{do not reject } H_0 | H_1 \text{ true})$
- False Negative
- Probability we NOT reject that male hypertensives’ cholesterol is that of the general population when in truth the mean cholesterol for hypertensives is different than the general male population

Power

- Power = 1-$\beta = P(\text{reject } H_0 | H_1 \text{ true})$
- Everyone wants high power, and therefore low Type II error

Cholesterol Sample Data

- $N = 25$
- $\bar{X} = 220 \text{ mg/ml}$
- $\mu = 211 \text{ mg/ml}$
- $s = 38.6 \text{ mg/ml} (s^2 = 1489.96)$
- $\sigma = 46 \text{ mg/ml} (\sigma^2 = 2116)$
- $\alpha = 0.05$
- Power? Next lecture!
Z Test Statistic and N(0,1)

- Want to test continuous outcome
- Known variance
- Under H₀ \(\frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1) \)

- Therefore,

 Reject H₀ if \(\frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} > 1.96 \) (gives a 2-sided \(\alpha = 0.05 \) test)

 Reject H₀ if \(\bar{X} > \mu_0 + 1.96 \frac{\sigma}{\sqrt{n}} \) or \(\bar{X} < \mu_0 - 1.96 \frac{\sigma}{\sqrt{n}} \)

Experiment

✓ Develop hypotheses
✓ Collect sample/Conduct experiment
✓ Calculate test statistic
✓ Compare test statistic with what is expected when H₀ is true
 ▪ Reference distribution
 ▪ Assumptions about distribution of outcome variable

Z or Standard Normal Distribution
How to test?

- Rejection interval
 - Like a confidence interval but centered on the null mean
 - Z test or Critical Value
 - $N(0,1)$ distribution and alpha
 - t test or Critical Value
 - t distribution and alpha
 - P-value
 - Confidence interval
General Formula $(1-\alpha)\%$

Rejection Region for Mean Point Estimate

$$\left(\mu - \frac{Z_{1-\alpha/2}\sigma}{\sqrt{n}} , \mu + \frac{Z_{1-\alpha/2}\sigma}{\sqrt{n}}\right)$$

- Note that $+Z_{(\alpha/2)} = -Z_{(1-\alpha/2)}$
- 90% CI : $Z = 1.645$
- 95% CI : $Z = 1.96$
- 99% CI : $Z = 2.58$

Cholesterol Rejection Interval Using H_0 Population Information

N$(211, 46^2)$

Reject H_0 if 220 is outside of (193,229)

Normal Distribution

Cholesterol Rejection Interval Using H_0 Sample Information

t$(df=24, 211, 38.6^2)$

Reject H_0 if 220 is outside of (195,227)

t Distribution (df = 24)
Side Note on t vs. Z

- If \(s = \sigma \) then the \(t \) value will be larger than the \(Z \) value
- BUT, here our sample standard deviation (38.6) was quite a bit smaller than the population sd (46)
 - HERE intervals using \(t \) look smaller than \(Z \) intervals BUT
 - Because of sd, not distribution

How to test?

- Rejection interval
 - Like a confidence interval but centered on the null mean
- Z test or Critical Value
 - N(0,1) distribution and alpha
- t test or Critical Value
 - \(t \) distribution and alpha
- P-value
- Confidence interval

Z-test: Do Not Reject \(H_0 \)

\[
|Z| = \left| \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \right| = \frac{|220 - 211|}{46 / \sqrt{25}} = 0.98 < 1.96
\]
Determining Statistical Significance: Critical Value Method

- Compute the test statistic \(Z \) (0.98)
- Compare to the critical value
 - Standard Normal value at \(\alpha \)-level (1.96)
- If \(|\text{test statistic}| > \text{critical value}\)
 - Reject \(H_0 \)
 - Results are statistically significant
- If \(|\text{test statistic}| < \text{critical value}\)
 - Do not reject \(H_0 \)
 - Results are not statistically significant

T-Test Statistic

- Want to test continuous outcome
- Unknown variance (s, not \(\sigma \))
- Under \(H_0 \), \(\frac{\bar{X} - \mu_0}{s / \sqrt{n}} \sim t_{(n-1)} \)
- Critical values: statistics books or computer
- t-distribution approximately normal for degrees of freedom (df) >30
Cholesterol: t-statistic

• Using data $T = \frac{\bar{X} - \mu_0}{s / \sqrt{n}} = \frac{220 - 211}{38.6 / \sqrt{25}} = 1.17$

• For $\alpha = 0.05$, two-sided test from $t(24)$ distribution the critical value = 2.064

• $|T| = 1.17 < 2.064$

• The difference is not statistically significant at the $\alpha = 0.05$ level

• Fail to reject H_0

Almost all ‘Critical Value’ Tests: Exact Same Idea

• Paired tests

• 2-sample tests

• Continuous data

• Binary data

• See appendix at end of slides

How to test?

✓ Rejection interval
 • Like a confidence interval but centered on the null mean

✓ Z test or Critical Value
 • $N(0,1)$ distribution and alpha

✓ t test or Critical Value
 • t distribution and alpha

✓ P-value
 • Confidence interval
P-value

- Smallest α the observed sample would reject H_0
- Given H_0 is true, probability of obtaining a result as extreme or more extreme than the actual sample
- MUST be based on a model
 - Normal, t, binomial, etc.

Cholesterol Example

- P-value for two sided test
- $\bar{X} = 220$ mg/ml, $\sigma = 46$ mg/ml
- $n = 25$
- H_0: $\mu = 211$ mg/ml
- H_A: $\mu \neq 211$ mg/ml

$$2 \cdot P[\bar{X} > 220] = 0.33$$

Determining Statistical Significance: P-Value Method

- Compute the exact p-value (0.33)
- Compare to the predetermined α-level (0.05)
 - If p-value $< \text{predetermined } \alpha$-level
 - Reject H_0
 - Results are statistically significant
 - If p-value $> \text{predetermined } \alpha$-level
 - Do not reject H_0
 - Results are not statistically significant
P-value Interpretation Reminders

- Measure of the strength of evidence in the data that the null is not true
- A random variable whose value lies between 0 and 1
- NOT the probability that the null hypothesis is true.

How to test?

- Rejection interval
 - Like a confidence interval but centered on the null mean
- Z test or Critical Value
 - $N(0,1)$ distribution and alpha
- t test or Critical Value
 - t distribution and alpha
- P-value
- Confidence interval

Outline

- Estimation and Hypotheses
- How to Test Hypotheses
 - Confidence Intervals
 - Regression
 - Error
 - Diagnostic Testing
 - Misconceptions
General Formula $(1-\alpha)\% \text{ CI for } \mu$

$$
\left(\bar{X} - \frac{Z_{1-\alpha/2} \sigma}{\sqrt{n}}, \bar{X} + \frac{Z_{1-\alpha/2} \sigma}{\sqrt{n}} \right)
$$

- Construct an interval around the point estimate
- Look to see if the population/null mean is inside

Cholesterol Confidence Interval Using Population Variance (Z)

CI for the Mean, Unknown Variance

- Pretty common
- Uses the t distribution
- Degrees of freedom

$$
\left(\bar{X} - \frac{t_{\alpha/2, n-1} s}{\sqrt{n}}, \bar{X} + \frac{t_{\alpha/2, n-1} s}{\sqrt{n}} \right) = \left(\frac{220 - 2.064 \times 38.6}{\sqrt{25}}, \frac{220 + 2.064 \times 38.6}{\sqrt{25}} \right) = (204.06, 235.93)
$$
Cholesterol Confidence Interval Using Sample Data (t)

$t (df=24, 220, 38.6^2)$

But I Have All Zeros!

Calculate 95% upper bound

- Known # of trials without an event (2.11 van Belle 2002, Louis 1981)
- Given no observed events in n trials, 95% upper bound on rate of occurrence is $3 / (n + 1)$
 - No fatal outcomes in 20 operations
 - 95% upper bound on rate of occurrence = $3 / (20 + 1) = 0.143$, so the rate of occurrence of fatalities could be as high as 14.3%

Hypothesis Testing and Confidence Intervals

- Hypothesis testing focuses on where the sample mean is located
- Confidence intervals focus on plausible values for the population mean
CI Interpretation

• Cannot determine if a particular interval does/do not contain true mean
• Can say in the long run
 ▪ Take many samples
 ▪ Same sample size
 ▪ From the same population
 ▪ 95% of similarly constructed confidence intervals will contain true mean
• Think about meta analyses

Interpret a 95% Confidence Interval (CI) for the population mean, μ

• “If we were to find many such intervals, each from a different random sample but in exactly the same fashion, then, in the long run, about 95% of our intervals would include the population mean, μ, and 5% would not.”

Do NOT interpret a 95% CI...

• “There is a 95% probability that the true mean lies between the two confidence values we obtained from a particular sample”
• “We can say that we are 95% confident that the true mean does lie between these two values.”
• Overlapping CIs do NOT imply non-significance
Take Home: Hypothesis Testing

- Many ways to test
 - Rejection interval
 - Z test, t test, or Critical Value
 - P-value
 - Confidence interval
- For this, all ways will agree
 - If not: math wrong, rounding errors
- Make sure interpret correctly

Take Home: Hypothesis Testing

- How to turn questions into hypotheses
- Failing to reject the null hypothesis DOES NOT mean that the null is true
- Every test has assumptions
 - A statistician can check all the assumptions
 - If the data does not meet the assumptions there are non-parametric versions of tests (see text)

Take Home: CI

- Meaning/interpretation of the CI
- How to compute a CI for the true mean when variance is known (normal model)
- How to compute a CI for the true mean when the variance is NOT known (t distribution)
Take Home: Vocabulary

• Null Hypothesis: H₀
• Alternative Hypothesis: H₁ or Hₐ or Hₐ
• Significance Level: α level
• Acceptance/Rejection Region
• Statistically Significant
• Test Statistic
• Critical Value
• P-value, Confidence Interval

Outline

✓ Estimation and Hypotheses
✓ How to Test Hypotheses
✓ Confidence Intervals
➢ Regression
• Error
• Diagnostic Testing
• Misconceptions

Regression

• Continuous outcome
 ▪ Linear
• Binary outcome
 ▪ Logistic
• Many other types
Linear regression
• Model for simple linear regression
 \[Y_i = \beta_0 + \beta_1 x_{1i} + \epsilon_i \]
 \[\beta_0 = \text{intercept} \]
 \[\beta_1 = \text{slope} \]
• Assumptions
 \[\text{Observations are independent} \]
 \[\text{Normally distributed with constant variance} \]
• Hypothesis testing
 \[H_0: \beta_1 = 0 \quad \text{vs.} \quad H_A: \beta_1 \neq 0 \]

In Order of Importance
1. Independence
2. Equal variance
3. Normality
(for ANOVA and linear regression)

More Than One Covariate
• \[Y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{3i} + \epsilon_i \]
• \[\text{SBP} = \beta_0 + \beta_1 \text{Drug} + \beta_2 \text{Male} + \beta_3 \text{Age} \]
• \[\beta_1 \]
 \[\text{Association between Drug and SBP} \]
 \[\text{Average difference in SBP between the Drug and Control groups, given sex and age} \]
Testing?

- Each β has a p-value associated with it
- Each model will have an F-test
- Other methods to determine fit
 - Residuals
- See a statistician and/or take a biostatistics class. Or 3.

Repeated Measures
(3 or more time points)

- Do NOT use repeated measures AN(C)OVA
 - Assumptions quite stringent
- Talk to a statistician
 - Mixed model
 - Generalized estimating equations
 - Other

An Aside: Correlation

- Range: -1 to 1
- Test is correlation is $\neq 0$
- With $N=1000$, easy to have highly significant ($p<0.001$) correlation = 0.05
 - Statistically significant that is
 - No where CLOSE to meaningfully different from 0
- Partial Correlation Coefficient
Do Not Use Correlation. Use Regression

• Some fields: Correlation still popular
 ▪ Partial regression coefficients
• High correlation is > 0.8 (in absolute value). Maybe 0.7
• Never believe a p-value from a correlation test
• Regression coefficients are more meaningful

Analysis Follows Design

Questions → Hypotheses →
Experimental Design → Samples →
Data → Analyses → Conclusions

Outline

✓ Estimation and Hypotheses
✓ How to Test Hypotheses
✓ Confidence Intervals
✓ Regression
✓ Error
 ▪ Diagnostic Testing
 ▪ Misconceptions
Is α or β more important?

- Depends on the question
- Most will say protect against Type I error
- Need to think about individual and population health implications and costs

Omics

- False negative (Type II error)
 - Miss what could be important
 - Are these samples going to be looked at again?
- False positive (Type I error)
 - Waste resources following dead ends

HIV Screening

- False positive
 - Needless worry
 - Stigma
- False negative
 - Thinks everything is ok
 - Continues to spread disease
- For cholesterol example?
What do you need to think about?

- Is it worse to treat those who truly are not ill or to not treat those who are ill?
- That answer will help guide you as to what amount of error you are willing to tolerate in your trial design.

Outline

- Estimation and Hypotheses
- How to Test Hypotheses
- Confidence Intervals
- Regression
- Error
 - Diagnostic Testing
 - Misconceptions

Little Diagnostic Testing Lingo

- False Positive/False Negative (α, β)
- Positive Predictive Value (PPV)
 - Probability diseased given POSITIVE test result
- Negative Predictive Value (NPV)
 - Probability NOT diseased given NEGATIVE test result
- Predictive values depend on disease prevalence
Sensitivity, Specificity

- Sensitivity: how good is a test at correctly IDing people who have disease
 - Can be 100% if you say everyone is ill (all have positive result)
 - Useless test with bad Specificity
- Specificity: how good is the test at correctly IDing people who are well

Example: Western vs. ELISA

- 1 million people
- ELISA Sensitivity = 99.9%
- ELISA Specificity = 99.9%
- 1% prevalence of infection
 - 10,000 positive by Western (gold standard)
 - 9990 true positives (TP) by ELISA
 - 10 false negatives (FN) by ELISA

1% Prevalence

- 990,000 not infected
 - 989,010 True Negatives (TN)
 - 990 False Positives (FP)
- Without confirmatory test
 - Tell 990 or ~0.1% of the population they are infected when in reality they are not
 - PPV = 91%, NPV = 99.999%
1% Prevalence

- 10980 total test positive by ELISA
 - 9990 true positive
 - 990 false positive
- 9990/10980 = probability diseased GIVEN positive by ELISA = PPV = 0.91 = 91%

- 989,020 total test negatives by ELISA
 - 989,010 true negatives
 - 10 false negatives
- 989010/989020 = NPV = 99.999%

0.1% Prevalence

- 1,000 infected – ELISA picks up 999
 - 1 FN
- 999,000 not infected
 - 989,001 True Negatives (TN)
 - 999 False Positives (FP)
- Positive predictive value = 50%
- Negative predictive value = 99.999%

10% Prevalence

- 99% PPV
- 99.99% NPV
Prevalence Matters
(Population You Sample to Estimate Prevalence, too)

- Numbers look “good” with high prevalence
 - Testing at STD clinic in high risk populations
- Low prevalence means even very high sensitivity and specificity will result in middling PPV
- Calculate PPV and NPV for 0.01% prevalence found in female blood donors

Prevalence Matters

- PPV and NPV tend to come from good cohort data
- Can estimate PPV/NPV from case control studies but the formulas are hard and you need to be REALLY sure about the prevalence
 - Triple sure

High OR Does Not a Good Test Make

- Diagnostic tests need separation
- ROC curves
 - Not logistic regression with high OR
- Strong association between 2 variables does not mean good prediction of separation
What do you need to think about?

• How good does the test need to be?
 ▪ 96% sensitivity and 10% specificity?
 ▪ 66% AUC? (What is that?)
• Guide you as to what amount of differentiation, levels of sensitivity, specificity, PPV and NPV you are willing to tolerate in your trial design

Outline

✓ Estimation and Hypotheses
✓ How to Test Hypotheses
✓ Confidence Intervals
✓ Regression
✓ Error
✓ Diagnostic Testing
✓ Misconceptions

Avoid Common Mistakes: Hypothesis Testing

• If you have paired data, use a paired test
 ▪ If you don’t then you can lose power
• If you do NOT have paired data, do NOT use a paired test
 ▪ You can have the wrong inference
Avoid Common Mistakes: Hypothesis Testing

- These tests have assumptions of independence
 - Taking multiple samples per subject? Statistician MUST know
 - Different statistical analyses MUST be used and they can be difficult!
- Distribution of the observations
 - Histogram of the observations
 - Highly skewed data - t test - incorrect results

Avoid Common Mistakes: Hypothesis Testing

- Assume equal variances and the variances are not equal
 - Did not show variance test
 - Not that good of a test
 - ALWAYS graph your data first to assess symmetry and variance
- Not talking to a statistician

Estimates and P-Values

- Study 1: 25±9
 - Stat sig at the 1% level
- Study 2: 10±9
 - Not statistically significant (ns)
- 25 vs. 10 wow a big difference between these studies!
 - Um, no. 15±12.7
Comparing A to B
- Appropriate
 - Statistical properties of A-B
 - Statistical properties of A/B
- NOT Appropriate
 - Statistical properties of A
 - Statistical properties of B
 - Look they are different!

Not a big difference? 15?!?
- Distribution of the difference
 - 15±12.7
 - Not statistically significant
 - Standard deviations! Important.
- Study 3 has much larger sample size!
 - 2.5±0.9

3 Studies. 3 Answers, Maybe
- Study #3 is statistically significant
- Difference between study 3 and the other studies
 - Statistical
 - Different magnitudes
- Does study 3 replicate study 1?
- Is it all sample size?
Misconceptions

• P-value = inferential tool? Yes
 ▪ Helps demonstrate that population means in two groups are not equal
• Smaller p-value → larger effect? No
 ▪ Effect size is determined by the difference in the sample mean or proportion between 2 groups

Misconceptions

• A small p-value means the difference is statistically significant, not that the difference is clinically significant. YES
 ▪ A large sample size can help get a small p-value. YES, so do not be tricked.
• Failing to reject H₀ means what?
 ▪ There is not enough evidence to reject H₀ YES
 ▪ H₀ is true! NO NO NO NO!

Analysis Follows Design

Questions → Hypotheses →
Experimental Design → Samples →
Data → Analyses → Conclusions
Questions?

Appendix

• Formulas for Critical Values
• Layouts for how to choose a test

Do Not Reject H₀

\[|Z| = \left| \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \right| = \frac{220 - 211}{46 / \sqrt{25}} = 0.98 < 1.96 \]

220 = \bar{X} > \mu_0 + 1.96 \frac{\sigma}{\sqrt{n}} = 211 + 1.96 \times \frac{46}{\sqrt{25}} = 228.03 \ NO!

220 = \bar{X} < \mu_0 - 1.96 \frac{\sigma}{\sqrt{n}} = 211 - 1.96 \times \frac{46}{\sqrt{25}} = 192.97 \ NO!
Paired Tests: Difference
Two Continuous Outcomes
• Exact same idea
• Known variance: Z test statistic
• Unknown variance: t test statistic
• \(H_0: \mu_d = 0 \) vs. \(H_A: \mu_d \neq 0 \)
• Paired Z-test or Paired t-test

\[
Z = \frac{\bar{d}}{\sigma / \sqrt{n}} \quad \text{or} \quad T = \frac{\bar{d}}{s / \sqrt{n}}
\]

2 Samples: Same Variance
+ Sample Size Calculation Basis
• Unpaired - Same idea as paired
• Known variance: Z test statistic
• Unknown variance: t test statistic
• \(H_0: \mu_1 = \mu_2 \) vs. \(H_A: \mu_1 \neq \mu_2 \)
• Assume common variance

\[
Z = \frac{\bar{x} - \bar{y}}{\sigma \sqrt{1/n + 1/m}} \quad \text{or} \quad T = \frac{\bar{x} - \bar{y}}{s \sqrt{1/n + 1/m}}
\]

2 Sample Unpaired Tests:
2 Different Variances
• Same idea
• Known variance: Z test statistic
• Unknown variance: t test statistic
• \(H_0: \mu_1 = \mu_2 \) vs. \(H_A: \mu_1 \neq \mu_2 \)
• \(H_0: \mu_1 - \mu_2 = 0 \) vs. \(H_A: \mu_1 - \mu_2 \neq 0 \)

\[
Z = \frac{\bar{x} - \bar{y}}{\sqrt{\sigma_1^2/n + \sigma_2^2/m}} \quad \text{or} \quad T = \frac{\bar{x} - \bar{y}}{\sqrt{s_1^2/n + s_2^2/m}}
\]
One Sample Binary Outcomes

- Exact same idea
- For large samples
 - Use Z test statistic
 - Set up in terms of proportions, not means

\[Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \]

Two Population Proportions

- Exact same idea
- For large samples use Z test statistic

\[Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n} + \frac{\hat{p}_2(1 - \hat{p}_2)}{m}}} \]
Normal/Large Sample Data?
 Yes
 Inference on means?
 Yes
 Independent?
 Yes
 Variance known?
 Yes
 Z test
 No
 Variances equal?
 Yes
 T test w/ pooled variance
 No
 T test w/ unequal variance
 No
 Paired t
 No
 Inference on variance?
 Yes
 T test w/ pooled variance
 No
 F test for variances
 No
 Inference on variance?